
BRANCHING,
ITERATION
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 2

6.0001 LECTURE 2 1

LAST TIME
 syntax and semantics

 scalar objects

 simple operations

 expressions, variables and values

6.0001 LECTURE 2 2

TODAY
 string object type

 branching and conditionals

 indentation

 iteration and loops

6.0001 LECTURE 2 3

STRINGS
 letters, special characters, spaces, digits

 enclose in quotation marks or single quotes
hi = "hello there"

 concatenate strings
name = "ana"

greet = hi + name

greeting = hi + " " + name

 do some operations on a string as defined in Python docs
silly = hi + " " + name * 3

6.0001 LECTURE 2 4

INPUT/OUTPUT: print
 used to output stuff to console

 keyword is print

x = 1

print(x)

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

6.0001 LECTURE 2 5

INPUT/OUTPUT: input("")
 prints whatever is in the quotes

 user types in something and hits enter

 binds that value to a variable

text = input("Type anything... ")

print(5*text)

 input gives you a string so must cast if working
with numbers

num = int(input("Type a number... "))

print(5*num)

6.0001 LECTURE 2 6

COMPARISON OPERATORS ON
int, float, string

 i and j are variable names

 comparisons below evaluate to a Boolean

i > j

i >= j

i < j

i <= j

i == j equality test, True if i is the same as j

i != j inequality test, True if i not the same as j

6.0001 LECTURE 2 7

LOGIC OPERATORS ON bools
 a and b are variable names (with Boolean values)

not a  True if a is False
False if a is True

a and b  True if both are True

a or b  True if either or both are True

6.0001 LECTURE 2 8

A B A and B A or B

True True True True

True False False True

False True False True

False False False False

COMPARISON EXAMPLE
pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)

6.0001 LECTURE 2 9

If right clear,
go right

If right blocked,
go forward

If right and
front blocked,

go left

If right , front,
left blocked,

go back

6.0001 LECTURE 2 10

CONTROL FLOW - BRANCHING
if <condition>:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

elif <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

 <condition> has a value True or False

 evaluate expressions in that block if <condition> is True

6.0001 LECTURE 2 11

INDENTATION
matters in Python

 how you denote blocks of code
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

print("x is smaller")

print("y is smaller")

6.0001 LECTURE 2 12

= vs ==
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")

6.0001 LECTURE 2 13

 Legend of Zelda –
Lost Woods

 keep going right,
takes you back to this
same screen, stuck in
a loop

if <exit right>:

<set background to woods_background>

if <exit right>:

<set background to woods_background>

if <exit right>:

<set background to woods_background>

and so on and on and on...

else:

<set background to exit_background>

else:

<set background to exit_background>

else:

<set background to exit_background>

<set background to woods_background>

if <exit right>:

else:

<set background to exit_background>

<set background to woods_background>

if <exit right>:

else:

<set background to exit_background>

<set background to woods_background>

and so on and on and on...

<set background to exit_background>

6.0001 LECTURE 2 14

Image Courtesy Nintendo, All Rights Reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

while <exit right>:

<set background to woods_background>

<set background to exit_background>

 Legend of Zelda –
Lost Woods

 keep going right,
takes you back to this
same screen, stuck in
a loop

6.0001 LECTURE 2 15

<set background to woods_background>

Word Cloud copyright unknown, All Right Reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>

<expression>

...

 <condition> evaluates to a Boolean

 if <condition> is True, do all the steps inside the
while code block

 check <condition> again

 repeat until <condition> is False

6.0001 LECTURE 2 16

while LOOP EXAMPLE
You are in the Lost Forest.



Go left or right?

PROGRAM:

n = input("You're in the Lost Forest. Go left or right? ")

while n == "right":

n = input("You're in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!")

6.0001 LECTURE 2 17

CONTROL FLOW:
while and for LOOPS
 iterate through numbers in a sequence

more complicated with while loop

n = 0

while n < 5:

print(n)

n = n+1

shortcut with for loop

for n in range(5):

print(n)

6.0001 LECTURE 2 18

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>

<expression>

...

 each time through the loop, <variable> takes a value

 first time, <variable> starts at the smallest value

 next time, <variable> gets the prev value + 1

 etc.

6.0001 LECTURE 2 19

range(start,stop,step)
 default values are start = 0 and step = 1 and optional

 loop until value is stop - 1

mysum = 0

for i in range(7, 10):

mysum += i

print(mysum)

mysum = 0

for i in range(5, 11, 2):

mysum += i

print(mysum)

6.0001 LECTURE 2 20

break STATEMENT
 immediately exits whatever loop it is in

 skips remaining expressions in code block

 exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.0001 LECTURE 2 21

break STATEMENT
mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

 what happens in this program?

mysum += i

if mysum == 5:

break

6.0001 LECTURE 2 22

for VS while LOOPS
for loops

 know number of
iterations

 can end early via
break

 uses a counter

 can rewrite a for loop
using a while loop

while loops

 unbounded number of
iterations

 can end early via break

 can use a counter but
must initialize before loop
and increment it inside loop

may not be able to
rewrite a while loop using
a for loop

6.0001 LECTURE 2 23

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

PYTHON CLASSES
and INHERITANCE
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 9

6.0001 LECTURE 9 1

LAST TIME
 abstract data types through classes

 Coordinate example

 Fraction example

 more on classes
• getters and setters
• information hiding
• class variables

 inheritance

6.0001 LECTURE 9 2

TODAY

IMPLEMENTING USING
THE CLASS vs THE CLASS

implementing a new
object type with a class
• define the class

• define data attributes
(WHAT IS the object)

• define methods
(HOW TO use the object)

6.0001 LECTURE 9 3

using the new object type in
code
• create instances of the

object type

• do operations with them

 write code from two different perspectives

CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS
 class name is the type
class Coordinate(object)

 class is defined generically
• use self to refer to some

instance while defining the
class

(self.x – self.y)**2

• self is a parameter to
methods in class definition

 class defines data and
methods common across all
instances

6.0001 LECTURE 9 4

 instance is one specific object
coord = Coordinate(1,2)

 data attribute values vary
between instances
c1 = Coordinate(1,2)

c2 = Coordinate(3,4)

• c1 and c2 have different data
attribute values c1.x and c2.x
because they are different
objects

 instance has the structure of
the class

WHY USE OOP AND
CLASSES OF OBJECTS?
• mimic real life

• group different objects part of the same type

6.0001 LECTURE 9 5

Image Credits, clockwise from top: Image Courtesy Harald Wehner, in the public Domain. Image Courtesy MTSOfan, CC-BY-NC-SA. Image Courtesy Carlos Solana, license CC-
BY-NC-SA. Image Courtesy Rosemarie Banghart-Kovic, license CC-BY-NC-SA. Image Courtesy Paul Reynolds, license CC-BY. Image Courtesy Kenny Louie, License CC-BY

https://en.wikipedia.org/wiki/File:Cat-MaineCoon-Cookie.png
https://www.flickr.com/photos/mtsofan/7393425414/in/photolist-2H2UGg-cgkeMY-7Go2Mx-5GEedL-84ayar-7GrXwA-9RnHdr-6sWUDN-9V5h2M-9sq2Py-6cjvhR-6Bo7Zc-63BtcB-6wPe7F-3PaYAi-6KMqiS-dKX9H9-4GZ3j1-7daYdW-6n73V5-4GUQwg-cg8Gnj-a2HXNf-nCdtNu-6hXqus-5MB5eH-4GU
https://www.flickr.com/photos/lasombraenlapared/3586725904/in/photolist-6sWUDN-9V5h2M-9sq2Py-6cjvhR-6Bo7Zc-63BtcB-6wPe7F-3PaYAi-6KMqiS-dKX9H9-4GZ3j1-7daYdW-6n73V5-4GUQwg-cg8Gnj-a2HXNf-nCdtNu-6hXqus-5MB5eH-4GUPni-bTfiPK-frQsn6-8mgNPZ-avEdRy-agYEqz-
https://en.wikipedia.org/wiki/File:Kitten_in_Rizal_Park,_Manila.jpg#/media/File:Kitten_in_Rizal_Park,_Manila.jpg
https://en.wikipedia.org/wiki/Kitten#/media/File:Kitten_and_partial_reflection_in_mirror.jpg
https://www.flickr.com/photos/rosemarie61103/4891530841/in/photolist-8sfnGD-7BoAhV-SRSQD-f3Rr95-6S55ot-7UDhTX-8JGxsa-6KKpr1-4XDTzD-azRUjH-azUyWW-2XXbQT-7wq8gt-8sfnwK-fhUDb-53g43K-4RjBWs-6vN29o-8sfn1X-2ms8TD-4vNmKX-4f856g-2Y2AeN-6p8AZM-8sfnbp-4v72Q

WHY USE OOP AND
CLASSES OF OBJECTS?
• mimic real life

• group different objects part of the same type

6.0001 LECTURE 9 66.0001 LECTURE 9 6

Image Credits, clockwise from top: Image Courtesy Harald Wehner, in the public Domain. Image Courtesy MTSOfan, CC-BY-NC-SA. Image Courtesy Carlos Solana, license CC-
BY-NC-SA. Image Courtesy Rosemarie Banghart-Kovic, license CC-BY-NC-SA. Image Courtesy Paul Reynolds, license CC-BY. Image Courtesy Kenny Louie, License CC-BY

https://en.wikipedia.org/wiki/File:Cat-MaineCoon-Cookie.png
https://www.flickr.com/photos/mtsofan/7393425414/in/photolist-2H2UGg-cgkeMY-7Go2Mx-5GEedL-84ayar-7GrXwA-9RnHdr-6sWUDN-9V5h2M-9sq2Py-6cjvhR-6Bo7Zc-63BtcB-6wPe7F-3PaYAi-6KMqiS-dKX9H9-4GZ3j1-7daYdW-6n73V5-4GUQwg-cg8Gnj-a2HXNf-nCdtNu-6hXqus-5MB5eH-4GU
https://www.flickr.com/photos/lasombraenlapared/3586725904/in/photolist-6sWUDN-9V5h2M-9sq2Py-6cjvhR-6Bo7Zc-63BtcB-6wPe7F-3PaYAi-6KMqiS-dKX9H9-4GZ3j1-7daYdW-6n73V5-4GUQwg-cg8Gnj-a2HXNf-nCdtNu-6hXqus-5MB5eH-4GUPni-bTfiPK-frQsn6-8mgNPZ-avEdRy-agYEqz-
https://en.wikipedia.org/wiki/File:Kitten_in_Rizal_Park,_Manila.jpg#/media/File:Kitten_in_Rizal_Park,_Manila.jpg
https://en.wikipedia.org/wiki/Kitten#/media/File:Kitten_and_partial_reflection_in_mirror.jpg
https://www.flickr.com/photos/rosemarie61103/4891530841/in/photolist-8sfnGD-7BoAhV-SRSQD-f3Rr95-6S55ot-7UDhTX-8JGxsa-6KKpr1-4XDTzD-azRUjH-azUyWW-2XXbQT-7wq8gt-8sfnwK-fhUDb-53g43K-4RjBWs-6vN29o-8sfn1X-2ms8TD-4vNmKX-4f856g-2Y2AeN-6p8AZM-8sfnbp-4v72Q

GROUPS OF OBJECTS HAVE
ATTRIBUTES (RECAP)
 data attributes
• how can you represent your object with data?

• what it is

• for a coordinate: x and y values

• for an animal: age, name

 procedural attributes (behavior/operations/methods)
• how can someone interact with the object?

• what it does

• for a coordinate: find distance between two

• for an animal: make a sound

6.0001 LECTURE 9 7

HOW TO DEFINE A CLASS
(RECAP)

class Animal(object):

def __init__(self, age):

self.age = age

self.name = None

myanimal = Animal(3)

6.0001 LECTURE 9 8

GETTER AND SETTER METHODS
class Animal(object):

def __init__(self, age):

self.age = age

self.name = None

def get_age(self):

return self.age

def get_name(self):

return self.name

def set_age(self, newage):

self.age = newage

def set_name(self, newname=""):

self.name = newname

def __str__(self):

return "animal:"+str(self.name)+":"+str(self.age)

 getters and setters should be used outside of class to

access data attributes
6.0001 LECTURE 9 9

AN INSTANCE and
DOT NOTATION (RECAP)
 instantiation creates an instance of an object

a = Animal(3)

 dot notation used to access attributes (data and
methods) though it is better to use getters and setters
to access data attributes

a.age

a.get_age()

6.0001 LECTURE 9 10

INFORMATION HIDING
 author of class definition may change data attribute
variable names

class Animal(object):

def __init__(self, age):

self.years = age

def get_age(self):

return self.years

 if you are accessing data attributes outside the class and
class definition changes, may get errors

 outside of class, use getters and setters instead
use a.get_age() NOT a.age
• good style
• easy to maintain code
• prevents bugs

6.0001 LECTURE 9 11

PYTHON NOT GREAT AT
INFORMATION HIDING
 allows you to access data from outside class definition
print(a.age)

 allows you to write to data from outside class definition
a.age = 'infinite'

 allows you to create data attributes for an instance from
outside class definition
a.size = "tiny"

 it’s not good style to do any of these!

6.0001 LECTURE 9 12

DEFAULT ARGUMENTS
 default arguments for formal parameters are used if no
actual argument is given
def set_name(self, newname=""):

self.name = newname

 default argument used here
a = Animal(3)

a.set_name()

print(a.get_name())

 argument passed in is used here
a = Animal(3)

a.set_name("fluffy")

print(a.get_name())

6.0001 LECTURE 9 13

HIERARCHIES

6.0001 LECTURE 9 14

Image Credits, clockwise from top: Image Courtesy Deeeep, CC-BY-NC. Image Image Courtesy MTSOfan, CC-BY-NC-SA. Image Courtesy Carlos Solana, license CC-BY-NC-SA.
Image Courtesy Rosemarie Banghart-Kovic, license CC-BY-NC-SA. Image Courtesy Paul Reynolds, license CC-BY. Image Courtesy Kenny Louie, License CC-BY. Courtesy
Harald Wehner, in the public Domain.

https://www.flickr.com/photos/deeeepak/3155185552/in/photolist-5NP9JU-5dfTUn-ajQAm8-raoXgN-EMXo-8YU98Y-HRRUs6-8K4jhn-2gsnA-4yX3D5-dsHLRq-8GvcQg-dCoExJ-8DVZ77-5Cj2bd-2PLPhd-wTvzZ-7NVmQG-4KDtXP-otHzMK-aUXEJP-dmqw39-9Ss2PW-2U4Z9-7ThH2y-858bXB-5NJRHe-
https://www.flickr.com/photos/mtsofan/7393425414/in/photolist-2H2UGg-cgkeMY-7Go2Mx-5GEedL-84ayar-7GrXwA-9RnHdr-6sWUDN-9V5h2M-9sq2Py-6cjvhR-6Bo7Zc-63BtcB-6wPe7F-3PaYAi-6KMqiS-dKX9H9-4GZ3j1-7daYdW-6n73V5-4GUQwg-cg8Gnj-a2HXNf-nCdtNu-6hXqus-5MB5eH-4GU
https://www.flickr.com/photos/lasombraenlapared/3586725904/in/photolist-6sWUDN-9V5h2M-9sq2Py-6cjvhR-6Bo7Zc-63BtcB-6wPe7F-3PaYAi-6KMqiS-dKX9H9-4GZ3j1-7daYdW-6n73V5-4GUQwg-cg8Gnj-a2HXNf-nCdtNu-6hXqus-5MB5eH-4GUPni-bTfiPK-frQsn6-8mgNPZ-avEdRy-agYEqz-
https://en.wikipedia.org/wiki/File:Kitten_in_Rizal_Park,_Manila.jpg#/media/File:Kitten_in_Rizal_Park,_Manila.jpg
https://en.wikipedia.org/wiki/Kitten#/media/File:Kitten_and_partial_reflection_in_mirror.jpg
https://www.flickr.com/photos/rosemarie61103/4891530841/in/photolist-8sfnGD-7BoAhV-SRSQD-f3Rr95-6S55ot-7UDhTX-8JGxsa-6KKpr1-4XDTzD-azRUjH-azUyWW-2XXbQT-7wq8gt-8sfnwK-fhUDb-53g43K-4RjBWs-6vN29o-8sfn1X-2ms8TD-4vNmKX-4f856g-2Y2AeN-6p8AZM-8sfnbp-4v72Q
https://en.wikipedia.org/wiki/File:Cat-MaineCoon-Cookie.png

Animal

Cat Rabbit

HIERARCHIES
 parent class

(superclass)

 child class
(subclass)
• inherits all data Person

and behaviors of
parent class

• add more info

• add more behavior

• override behavior

Student

6.0001 LECTURE 9 15

INHERITANCE:
PARENT CLASS
class Animal(object):

def __init__(self, age):

self.age = age

self.name = None

def get_age(self):

return self.age

def get_name(self):

return self.name

def set_age(self, newage):

self.age = newage

def set_name(self, newname=""):

self.name = newname

def __str__(self):

return "animal:"+str(self.name)+":"+str(self.age)

6.0001 LECTURE 9 16

INHERITANCE:
SUBCLASS

class Cat(Animal):

def speak(self):

print("meow")

def __str__(self):

return "cat:"+str(self.name)+":"+str(self.age)

 add new functionality with speak()
• instance of type Cat can be called with new methods

• instance of type Animal throws error if called with Cat’s
new method

 __init__ is not missing, uses the Animal version
6.0001 LECTURE 9 17

WHICH METHOD TO USE?
• subclass can have methods with same name as
superclass

• for an instance of a class, look for a method name in
current class definition

• if not found, look for method name up the hierarchy
(in parent, then grandparent, and so on)

• use first method up the hierarchy that you found with
that method name

6.0001 LECTURE 9 18

class Person(Animal):

def __init__(self, name, age):

Animal.__init__(self, age)

self.set_name(name)

self.friends = []

def get_friends(self):

return self.friends

def add_friend(self, fname):

if fname not in self.friends:

self.friends.append(fname)

def speak(self):

print("hello")

def age_diff(self, other):

diff = self.age - other.age

print(abs(diff), "year difference")

def __str__(self):

return "person:"+str(self.name)+":"+str(self.age)

6.0001 LECTURE 9 19

import random

class Student(Person):

def __init__(self, name, age, major=None):

Person.__init__(self, name, age)

self.major = major

def change_major(self, major):

self.major = major

def speak(self):

r = random.random()

if r < 0.25:

print("i have homework")

elif 0.25 <= r < 0.5:

print("i need sleep")

elif 0.5 <= r < 0.75:

print("i should eat")

else:

print("i am watching tv")

def __str__(self):

return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)

6.0001 LECTURE 9 20

CLASS VARIABLES AND THE
Rabbit SUBCLASS
 class variables and their values are shared between all
instances of a class

class Rabbit(Animal):

tag = 1

def __init__(self, age, parent1=None, parent2=None):

Animal.__init__(self, age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

 tag used to give unique id to each new rabbit instance

6.0001 LECTURE 9 21

Rabbit GETTER METHODS
class Rabbit(Animal):

tag = 1

def __init__(self, age, parent1=None, parent2=None):

Animal.__init__(self, age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

def get_rid(self):

return str(self.rid).zfill(3)

def get_parent1(self):

return self.parent1

def get_parent2(self):

return self.parent2

6.0001 LECTURE 9 22

WORKING WITH YOUR OWN
TYPES
def __add__(self, other):

returning object of same type as this class

return Rabbit(0, self, other)

 define + operator between two Rabbit instances
• define what something like this does: r4 = r1 + r2

where r1 and r2 are Rabbit instances

• r4 is a new Rabbit instance with age 0

• r4 has self as one parent and other as the other parent

• in __init__, parent1 and parent2 are of type Rabbit

6.0001 LECTURE 9 23

recall Rabbit’s __init__(self, age, parent1=None, parent2=None)

SPECIAL METHOD TO
COMPARE TWO Rabbits
 decide that two rabbits are equal if they have the same two
parents
def __eq__(self, other):

parents_same = self.parent1.rid == other.parent1.rid \

and self.parent2.rid == other.parent2.rid

parents_opposite = self.parent2.rid == other.parent1.rid \

and self.parent1.rid == other.parent2.rid

return parents_same or parents_opposite

 compare ids of parents since ids are unique (due to class var)

 note you can’t compare objects directly

• for ex. with self.parent1 == other.parent1

• this calls the __eq__ method over and over until call it on None and

gives an AttributeError when it tries to do None.parent1
6.0001 LECTURE 9 24

OBJECT ORIENTED
PROGRAMMING
 create your own collections of data

 organize information

 division of work

 access information in a consistent manner

 add layers of complexity

 like functions, classes are a mechanism for
decomposition and abstraction in programming

6.0001 LECTURE 9 25

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

WELCOME!
(download slides and .py files and follow along!)

6.0001 LECTURE 1

16.0001 LECTURE 1

TODAY
 course info

 what is computation

 python basics

 mathematical operations

 python variables and types

 NOTE: slides and code files up before each lecture
o highly encourage you to download them before lecture

o take notes and run code files when I do

o bring computers to answer in-class practice exercises!

26.0001 LECTURE 1

COURSE INFO
Grading

◦ approx. 20% Quiz

◦ approx. 40% Final

◦ approx. 30% Problem Sets

◦ approx. 10% MITx Finger Exercises

36.0001 LECTURE 1

COURSE POLICIES
 Collaboration

◦ may collaborate with anyone

◦ required to write code independently and write names of
all collaborators on submission

◦ we will be running a code similarity program on all psets

 Extensions
◦ no extensions

◦ late days, see course website for details

◦ drop and roll weight of max two psets in final exam grade

◦ should be EMERGENCY use only

46.0001 LECTURE 1

RECITATIONS
not mandatory

 two flavors

1) Lecture review: review lecture material
o if you missed lecture

o if you need a different take on the same concepts

2) Problem solving: teach you how to solve programming
problems

o useful if you don’t know how to set up pseudocode from pset words

o we show a couple of harder questions

o walk you through how to approach solving the problem

o brainstorm code solution along with the recitation instructor

o will post solutions after

6.0001 LECTURE 1 5

FAST PACED COURSE
 Position yourself to succeed!

◦ read psets when they come out and come back to them later

◦ use late days in emergency situations

 New to programming? PRACTICE. PRACTICE? PRACTICE!
◦ can’t passively absorb programming as a skill

◦ download code before lecture and follow along

◦ do MITx finger exercises

◦ don’t be afraid to try out Python commands!

66.0001 LECTURE 1

PRACTICE

76.0001 LECTURE 1

PROBLEM
SOLVING

PROGRAMMING
SKILL

KNOWLEDGE
OF CONCEPTS

TOPICS
 represent knowledge with data structures

 iteration and recursion as computational metaphors

 abstraction of procedures and data types

 organize and modularize systems using object classes
and methods

 different classes of algorithms, searching and sorting

 complexity of algorithms

6.0001 LECTURE 1 8

WHAT DOES A COMPUTER DO
 Fundamentally:

◦ performs calculations

a billion calculations per second!

◦ remembers results

100s of gigabytes of storage!

 What kinds of calculations?
◦ built-in to the language

◦ ones that you define as the programmer

 computers only know what you tell them

6.0001 LECTURE 1 9

TYPES OF KNOWLEDGE
 declarative knowledge is statements of fact.

◦ someone will win a Google
Cardboard before class ends

 imperative knowledge is a recipe or “how-to”.
1) Students sign up for raffle

2) Ana opens her IDE

3) Ana chooses a random number between 1st and nth responder

4) Ana finds the number in the responders sheet. Winner!

6.0001 LECTURE 1 10

A NUMERICAL EXAMPLE
 square root of a number x is y such that y*y = x

 recipe for deducing square root of a number x (16)
1) Start with a guess, g

2) If g*g is close enough to x, stop and say g is the
answer

3) Otherwise make a new guess by averaging g and x/g

4) Using the new guess, repeat process until close enough

6.0001 LECTURE 1 11

g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002

WHAT IS A RECIPE

1) sequence of simple steps

2) flow of control process that specifies when each
step is executed

3) a means of determining when to stop

1+2+3 = an algorithm!

6.0001 LECTURE 1 12

COMPUTERS ARE MACHINES
 how to capture a recipe in a mechanical process

 fixed program computer
◦ calculator

 stored program computer
◦ machine stores and executes instructions

6.0001 LECTURE 1 13

BASIC MACHINE ARCHITECTURE

6.0001 LECTURE 1 14

MEMORY

CONTROL

UNIT

ARITHMETIC

LOGIC UNIT

INPUT OUTPUT

program counter do primitive ops

STORED PROGRAM COMPUTER
 sequence of instructions stored inside computer

◦ built from predefined set of primitive instructions
1) arithmetic and logic

2) simple tests

3) moving data

 special program (interpreter) executes each
instruction in order
◦ use tests to change flow of control through sequence

◦ stop when done

6.0001 LECTURE 1 15

BASIC PRIMITIVES
 Turing showed that you can compute anything using 6
primitives

 modern programming languages have more
convenient set of primitives

 can abstract methods to create new primitives

 anything computable in one language is computable in
any other programming language

6.0001 LECTURE 1 16

CREATING RECIPES
 a programming language provides a set of primitive
operations

 expressions are complex but legal combinations of
primitives in a programming language

 expressions and computations have values and
meanings in a programming language

6.0001 LECTURE 1 17

ASPECTS OF LANGUAGES
 primitive constructs

◦ English: words

◦ programming language: numbers, strings, simple
operators

6.0001 LECTURE 1 18

Word Cloud copyright Michael Twardos, All Right Reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Word Cloud copyright unknown, All Right Reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.

https://www.blogger.com/profile/13059549809775325178
https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/
http://1.bp.blogspot.com/-JG9yJyFtVJ8/TklEax76aCI/AAAAAAAAB6I/jviw0P9nJsI/s1600/Screen%2Bshot%2B2011-07-24%2Bat%2B12.24.01%2BPM.png

ASPECTS OF LANGUAGES
 syntax

◦ English: "cat dog boy"  not syntactically valid

"cat hugs boy" syntactically valid

◦ programming language: "hi"5 not syntactically valid

3.2*5 syntactically valid

6.0001 LECTURE 1 19

ASPECTS OF LANGUAGES
 static semantics is which syntactically valid strings
have meaning
◦ English: "I are hungry" syntactically valid

but static semantic error

◦ programming language: 3.2*5  syntactically valid

3+"hi" static semantic error

6.0001 LECTURE 1 20

ASPECTS OF LANGUAGES
 semantics is the meaning associated with a
syntactically correct string of symbols with no static
semantic errors
◦ English: can have many meanings "Flying planes
can be dangerous"

◦ programming languages: have only one meaning but may
not be what programmer intended

6.0001 LECTURE 1 21

WHERE THINGS GO WRONG
 syntactic errors

◦ common and easily caught

 static semantic errors
◦ some languages check for these before running program

◦ can cause unpredictable behavior

 no semantic errors but different meaning than what
programmer intended
◦ program crashes, stops running

◦ program runs forever

◦ program gives an answer but different than expected

6.0001 LECTURE 1 22

PYTHON PROGRAMS
 a program is a sequence of definitions and commands

◦ definitions evaluated

◦ commands executed by Python interpreter in a shell

 commands (statements) instruct interpreter to do
something

 can be typed directly in a shell or stored in a file that
is read into the shell and evaluated
◦ Problem Set 0 will introduce you to these in Anaconda

6.0001 LECTURE 1 23

OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things
programs can do to them
◦ Ana is a human so she can walk, speak English, etc.

◦ Chewbacca is a wookie so he can walk, “mwaaarhrhh”, etc.

 objects are
◦ scalar (cannot be subdivided)

◦ non-scalar (have internal structure that can be accessed)

6.0001 LECTURE 1 24

SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

>>> type(5)

int

>>> type(3.0)

float

6.0001 LECTURE 1 25

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

6.0001 LECTURE 1 26

PRINTING TO CONSOLE
 to show output from code to a user, use print
command

In [11]: 3+2

Out[11]: 5

In [12]: print(3+2)

5

6.0001 LECTURE 1 27

EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression
<object> <operator> <object>

6.0001 LECTURE 1 28

OPERATORS ON ints and floats
 i+j  the sum

 i-j  the difference

 i*j  the product

 i/j  division

 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.0001 LECTURE 1 29

if both are ints, result is int
if either or both are floats, result is float

result is float

SIMPLE OPERATIONS
 parentheses used to tell Python to do these
operations first

 operator precedence without parentheses
◦ **

◦ *

◦ /

◦ + and – executed left to right, as appear in expression

6.0001 LECTURE 1 30

BINDING VARIABLES AND
VALUES
 equal sign is an assignment of a value to a variable
name

pi = 3.14159

pi_approx = 22/7

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by
invoking the name, by typing pi

6.0001 LECTURE 1 31

ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 to reuse names instead of values

 easier to change code later

pi = 3.14159

radius = 2.2

area = pi*(radius**2)

6.0001 LECTURE 1 32

PROGRAMMING vs MATH
 in programming, you do not “solve for x”

pi = 3.14159

radius = 2.2

area of circle

area = pi*(radius**2)

radius = radius+1

6.0001 LECTURE 1 33

CHANGING BINDINGS
 can re-bind variable names using new assignment
statements

 previous value may still stored in memory but lost the
handle for it

 value for area does not change until you tell the
computer to do the calculation again

6.0001 LECTURE 1 34

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2

area = pi*(radius**2)

radius = radius+1

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

DECOMPOSITION,
ABSTRACTION,
FUNCTIONS
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 4

6.0001 LECTURE 4 1

LAST TIME
 while loops vs for loops

 should know how to write both kinds

 should know when to use them

 guess-and-check and approximation methods

 bisection method to speed up programs

6.0001 LECTURE 4 2

TODAY
 structuring programs and hiding details

 functions

 specifications

 keywords: return vs print

 scope

6.0001 LECTURE 4 3

HOW DO WE WRITE CODE?
 so far…
• covered language mechanisms

• know how to write different files for each computation

• each file is some piece of code

• each code is a sequence of instructions

 problems with this approach
• easy for small-scale problems

• messy for larger problems

• hard to keep track of details

• how do you know the right info is supplied to the right
part of code

6.0001 LECTURE 4 4

GOOD PROGRAMMING
 more code not necessarily a good thing

 measure good programmers by the amount of
functionality

 introduce functions

 mechanism to achieve decomposition and abstraction

6.0001 LECTURE 4 5

EXAMPLE – PROJECTOR
 a projector is a black box

 don’t know how it works

 know the interface: input/output

 connect any electronic to it that can communicate
with that input

 black box somehow converts image from input source
to a wall, magnifying it

 ABSTRACTION IDEA: do not need to know how
projector works to use it

6.0001 LECTURE 4 6

EXAMPLE – PROJECTOR
 projecting large image for Olympics decomposed into
separate tasks for separate projectors

 each projector takes input and produces separate
output

 all projectors work together to produce larger image

 DECOMPOSITION IDEA: different devices work
together to achieve an end goal

6.0001 LECTURE 4 7

APPLY THESE CONCEPTS

6.0001 LECTURE 4 8

TO PROGRAMMING!

CREATE STRUCTURE with
DECOMPOSITION

6.0001 LECTURE 4 9

 in projector example, separate devices

 in programming, divide code into modules
• are self-contained

• used to break up code

• intended to be reusable

• keep code organized

• keep code coherent

 this lecture, achieve decomposition with functions

 in a few weeks, achieve decomposition with classes

SUPRESS DETAILS with
ABSTRACTION

6.0001 LECTURE 4 10

 in projector example, instructions for how to use it are
sufficient, no need to know how to build one

 in programming, think of a piece of code as a black box
• cannot see details

• do not need to see details

• do not want to see details

• hide tedious coding details

 achieve abstraction with function specifications or
docstrings

FUNCTIONS
 write reusable pieces/chunks of code, called functions

 functions are not run in a program until they are
“called” or “invoked” in a program

 function characteristics:
• has a name

• has parameters (0 or more)

• has a docstring (optional but recommended)

• has a body

• returns something

6.0001 LECTURE 4 11

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

is_even(3)

HOW TO WRITE and
CALL/INVOKE A FUNCTION

6.0001 LECTURE 4 12

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

IN THE FUNCTION BODY

6.0001 LECTURE 4 13

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

 formal parameter gets bound to the value of
actual parameter when function is called

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

VARIABLE SCOPE

6.0001 LECTURE 4 14

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE

6.0001 LECTURE 4 15

Global scope

f

x

z

Some
code

f scope

x 3

3

VARIABLE SCOPE

6.0001 LECTURE 4 16

Global scope

f

x

z

Some
code

f scope

x 4

3

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE

6.0001 LECTURE 4 17

Global scope

f

x

z

Some
code

3

f scope

x 4

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

returns 4

VARIABLE SCOPE

6.0001 LECTURE 4 18

Global scope

f

x

z

Some
code

3

4

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

ONE WARNING IF NO
return STATEMENT
def is_even(i):

"""

Input: i, a positive int

Does not return anything

"""

i%2 == 0

 Python returns the value None, if no return given

 represents the absence of a value

6.0001 LECTURE 4 19

return vs. print
 return only has meaning
inside a function

 only one return executed
inside a function

 code inside function but
after return statement not
executed

 has a value associated
with it, given to function
caller

 print can be used outside
functions

 can execute many print
statements inside a function

 code inside function can be
executed after a print
statement

 has a value associated with
it, outputted to the console

6.0001 LECTURE 4 20

FUNCTIONS AS ARGUMENTS
 arguments can take on any type, even functions

6.0001 LECTURE 4 21

def func_a():

print 'inside func_a'

def func_b(y):

print 'inside func_b'

return y

def func_c(z):

print 'inside func_c'

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

FUNCTIONS AS ARGUMENTS

6.0001 LECTURE 4 22

def func_a():

print 'inside func_a'

def func_b(y):

print 'inside func_b'

return y

def func_c(z):

print 'inside func_c'

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

Global scope

func_a

func_b

func_c

Some
code

Some
code

Some
code

func_a scope

returns NoneNone

Global scope

func_a

func_b

func_c

FUNCTIONS AS ARGUMENTS

6.0001 LECTURE 4 23

def func_a():

print 'inside func_a'

def func_b(y):

print 'inside func_b'

return y

def func_c(z):

print 'inside func_c'

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

Some
code

Some
code

Some
code

func_b scope

y 2

returns 2

None

7

Global scope

func_a

func_b

func_c

FUNCTIONS AS ARGUMENTS

24

def func_a():

print 'inside func_a'

def func_b(y):

print 'inside func_b'

return y

def func_c(z):

print 'inside func_c'

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

Some
code

Some
code

Some
code

func_c scope

z func_a

func_a scope

returns None

returns None

None

7

6.0001 LECTURE 4

None

 inside a function, can access a variable defined outside

 inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

SCOPE EXAMPLE

6.0001 LECTURE 4 25

def g(y):

print(x)

print(x + 1)

x = 5

g(x)

print(x)

def h(y):

x += 1

x = 5

h(x)

print(x)

def f(y):

x = 1

x += 1

print(x)

x = 5

f(x)

print(x)

 inside a function, can access a variable defined outside

 inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

SCOPE EXAMPLE

6.0001 LECTURE 4 26

def g(y):

print(x)

x = 5

g(x)

print(x)

def h(y):

x += 1

x = 5

h(x)

print(x)

def f(y):

x = 1

x += 1

print(x)

x = 5

f(x)

print(x)

HARDER SCOPE EXAMPLE

Python Tutor is your best friend to
help sort this out!

http://www.pythontutor.com/

IMPORTANT
and

TRICKY!

6.0001 LECTURE 4 27

http://www.pythontutor.com/

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS
Global scope

g

x

z

Some
code

3

6.0001 LECTURE 4 28

SCOPE DETAILS
g scope

x

h Some
code

3

6.0001 LECTURE 4 29

Global scope

g

x

z

Some
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS
g scope

x

h Some
code

34

6.0001 LECTURE 4 30

Global scope

g

x

z

Some
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS
Global scope

g

x

z

Some
code

3

g scope

x

h Some
code

3

h scope

x
“abc”4

6.0001 LECTURE 4 31

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

returns None

SCOPE DETAILS
g scope

x

h Some
code

None

4

6.0001 LECTURE 4 32

Global scope

g

x

z

Some
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

returns 4

SCOPE DETAILS

6.0001 LECTURE 4 33

Global scope

g

x

z

Some
code

3

4

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

DECOMPOSITION &
ABSTRACTION
 powerful together

 code can be used many times but only has to be
debugged once!

6.0001 LECTURE 4 34

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

OBJECT ORIENTED
PROGRAMMING
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 8

6.0001 LECTURE 8 1

OBJECTS
 Python supports many different kinds of data

1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 each is an object, and every object has:
• a type

• an internal data representation (primitive or composite)

• a set of procedures for interaction with the object

 an object is an instance of a type
• 1234 is an instance of an int

• "hello" is an instance of a string

6.0001 LECTURE 8 2

OBJECT ORIENTED
PROGRAMMING (OOP)
 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

 can create new objects of some type

 can manipulate objects

 can destroy objects
• explicitly using del or just “forget” about them

• python system will reclaim destroyed or inaccessible
objects – called “garbage collection”

6.0001 LECTURE 8 3

WHAT ARE OBJECTS?
 objects are a data abstraction

that captures…

(1) an internal representation
• through data attributes

(2) an interface for
interacting with object

• through methods
(aka procedures/functions)

• defines behaviors but
hides implementation

6.0001 LECTURE 8 4

 how are lists represented internally? linked list of cells

L =

 how to manipulate lists?
• L[i], L[i:j], +

• len(), min(), max(), del(L[i])

• L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

 internal representation should be private

 correct behavior may be compromised if you manipulate
internal representation directly

EXAMPLE:
[1,2,3,4] has type list

6.0001 LECTURE 8 5

1 -> 2 -> 3 -> 4 ->

ADVANTAGES OF OOP
 bundle data into packages together with procedures
that work on them through well-defined interfaces

 divide-and-conquer development
• implement and test behavior of each class separately
• increased modularity reduces complexity

 classes make it easy to reuse code
• many Python modules define new classes
• each class has a separate environment (no collision on

function names)
• inheritance allows subclasses to redefine or extend a

selected subset of a superclass’ behavior

6.0001 LECTURE 8 6

 make a distinction between creating a class and
using an instance of the class

 creating the class involves
• defining the class name

• defining class attributes

• for example, someone wrote code to implement a list class

 using the class involves
• creating new instances of objects

• doing operations on the instances

• for example, L=[1,2] and len(L)

6.0001 LECTURE 8 7

Implementing the class Using the class

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

DEFINE YOUR OWN TYPES
 use the class keyword to define a new type

class Coordinate(object):

#define attributes here

 similar to def, indent code to indicate which statements are
part of the class definition

 the word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)
• Coordinate is a subclass of object

• object is a superclass of Coordinate

6.0001 LECTURE 8 8

Implementing the class Using the class

WHAT ARE ATTRIBUTES?
 data and procedures that “belong” to the class

 data attributes
• think of data as other objects that make up the class

• for example, a coordinate is made up of two numbers

 methods (procedural attributes)
• think of methods as functions that only work with this class

• how to interact with the object

• for example you can define a distance between two
coordinate objects but there is no meaning to a distance
between two list objects

6.0001 LECTURE 8 9

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS
 first have to define how to create an instance of
object

 use a special method called __init__ to
initialize some data attributes

class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

6.0001 LECTURE 8 10

Implementing the class Using the class

ACTUALLY CREATING AN
INSTANCE OF A CLASS

c = Coordinate(3,4)

origin = Coordinate(0,0)

print(c.x)

print(origin.x)

 data attributes of an instance are called instance
variables

 don’t provide argument for self, Python does this
automatically

6.0001 LECTURE 8 11

Implementing the class Using the class

WHAT IS A METHOD?
 procedural attribute, like a function that works only
with this class

 Python always passes the object as the first argument
• convention is to use self as the name of the first

argument of all methods

 the “.” operator is used to access any attribute
• a data attribute of an object

• a method of an object

6.0001 LECTURE 8 12

DEFINE A METHOD FOR THE
Coordinate CLASS

class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

 other than self and dot notation, methods behave just

like functions (take params, do operations, return)
6.0001 LECTURE 8 13

Implementing the class Using the class

HOW TO USE A METHOD
def distance(self, other):

code here

Using the class:
 conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(c.distance(zero))

6.0001 LECTURE 8 14

 equivalent to

c = Coordinate(3,4)

zero = Coordinate(0,0)

print(Coordinate.distance(c, zero))

Implementing the class Using the class

PRINT REPRESENTATION OF
AN OBJECT
>>> c = Coordinate(3,4)

>>> print(c)

<__main__.Coordinate object at 0x7fa918510488>

 uninformative print representation by default

 define a __str__ method for a class

 Python calls the __str__ method when used with
print on your class object

 you choose what it does! Say that when we print a
Coordinate object, want to show

>>> print(c)

<3,4>

6.0001 LECTURE 8 15

DEFINING YOUR OWN PRINT
METHOD
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

def __str__(self):

return "<"+str(self.x)+","+str(self.y)+">"

6.0001 LECTURE 8 16

Implementing the class Using the class

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES
 can ask for the type of an object instance

>>> c = Coordinate(3,4)

>>> print(c)

<3,4>

>>> print(type(c))

<class __main__.Coordinate>

 this makes sense since
>>> print(Coordinate)

<class __main__.Coordinate>

>>> print(type(Coordinate))

<type 'type'>

 use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))

True

6.0001 LECTURE 8 17

Implementing the class Using the class

SPECIAL OPERATORS
 +, -, ==, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#basic-customization

 like print, can override these to work with your class

 define them with double underscores before/after
__add__(self, other)  self + other

__sub__(self, other)  self - other

__eq__(self, other)  self == other

__lt__(self, other)  self < other

__len__(self)  len(self)

__str__(self)  print self

... and others

6.0001 LECTURE 8 18

https://docs.python.org/3/reference/datamodel.html#basic-customization

EXAMPLE: FRACTIONS
 create a new type to represent a number as a fraction

 internal representation is two integers
• numerator

• denominator

 interface a.k.a. methods a.k.a how to interact with
Fraction objects
• add, subtract

• print representation, convert to a float

• invert the fraction

 the code for this is in the handout, check it out!

6.0001 LECTURE 8 19

THE POWER OF OOP
 bundle together objects that share
• common attributes and

• procedures that operate on those attributes

 use abstraction to make a distinction between how to
implement an object vs how to use the object

 build layers of object abstractions that inherit
behaviors from other classes of objects

 create our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8 20

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

UNDERSTANDING
PROGRAM
EFFICIENCY: 2
(download slides and .py files and follow along!)

6.0001 LECTURE 11

6.0001	LECTURE	11	 1	

TODAY

§ 	Classes	of	complexity	

§ 	Examples	characteris;c	of	each	class	

6.0001	LECTURE	11	 2	

WHY WE WANT TO UNDERSTAND
EFFICIENCY OF PROGRAMS

§ 	how	can	we	reason	about	an	algorithm	in	order	to	
predict	the	amount	of	;me	it	will	need	to	solve	a	
problem	of	a	par;cular	size?	

§ 	how	can	we	relate	choices	in	algorithm	design	to	the	
;me	efficiency	of	the	resul;ng	algorithm?	
◦ are	there	fundamental	limits	on	the	amount	of	;me	we	
will	need	to	solve	a	par;cular	problem?	

6.0001	LECTURE	11	 3	

ORDERS OF GROWTH: RECAP

Goals:		
§ 	want	to	evaluate	program’s	efficiency	when	input	is	very	big	
§ 	want	to	express	the	growth	of	program’s	run	5me	as	input	
size	grows	
§ 	want	to	put	an	upper	bound	on	growth	–	as	;ght	as	possible	
§ 	do	not	need	to	be	precise:	“order	of”	not	“exact”	growth	
§ 	we	will	look	at	largest	factors	in	run	;me	(which	sec;on	of	
the	program	will	take	the	longest	to	run?)	
§ 	thus,	generally	we	want	5ght	upper	bound	on	growth,	as	
func5on	of	size	of	input,	in	worst	case	

6.0001	LECTURE	11	 4	

COMPLEXITY CLASSES: RECAP

§ 	
§ 	
§ 	
§ 	
§ 	
co
§ 	
co
in

O(1)	denotes	constant	running	;me	
O(log	n)	denotes	logarithmic	running	;me	
O(n)	denotes	linear	running	;me	
O(n	log	n)	denotes	log-linear	running	;me	
O(nc)		denotes	polynomial	running	;me	(c	is	a	
nstant)	

O(cn)	denotes	exponen;al	running	;me	(c	is	a	
nstant	being	raised	to	a	power	based	on	size	of	
put)	

6.0001	LECTURE	11	 5	

COMPLEXITY CLASSES
ORDERED LOW TO HIGH

	

	

	O(1) :	 	 			constant	
	 								
	O(log n) :	 	 	logarithmic	
	 								
	O(n) :	 	 						linear	
	 								
	O(n log n):	 	 			loglinear	
	 								
	O(nc) :	 	 	polynomial	
	 								
	O(cn) :	 	 	exponen;al	

6.0001	LECTURE	11	 6	

COMPLEXITY GROWTH

CLASS	 n=10	 =	100	 =	1000	 =	1000000	

O(1)	 1	 1	 1	 1	

O(log	n)	 1	 2	 3	 6	

O(n)	 10	 100	 1000	 1000000	

O(n	log	n)	 10	 200	 3000	 6000000	

O(n^2)	 100	 10000	 1000000	 1000000000000	

O(2^n)	 1024	 12676506 1071508607186267320948425049060 Good	luck!!	
00228229 0018105614048117055336074437503
40149670 8837035105112493612249319837881
3205376	 5695858127594672917553146825187

1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316

52624386837205668069376	

6.0001	LECTURE	11	 7	

CONSTANT COMPLEXITY

§ 	complexity	independent	of	inputs	

§ 	very	few	interes;ng	algorithms	in	this	class,	but	can	
oYen	have	pieces	that	fit	this	class	

§ 	can	have	loops	or	recursive	calls,	but	ONLY	IF	number	
of	itera;ons	or	calls	independent	of	size	of	input	

6.0001	LECTURE	11	 8	

LOGARITHMIC COMPLEXITY

§ 	complexity	grows	as	log	of	size	of	one	of	its	inputs	

§ 	example:	
◦ bisec;on	search	
◦ binary	search	of	a	list	

6.0001	LECTURE	11	 9	

BISECTION SEARCH

§ 	suppose	we	want	to	know	if	a	par;cular	element	is	
present	in	a	list	

§ 	saw	last	;me	that	we	could	just	“walk	down”	the	list,	
checking	each	element	

§ 	complexity	was	linear	in	length	of	the	list	

§ 	suppose	we	know	that	the	list	is	ordered	from	
smallest	to	largest	
◦ saw	that	sequen;al	search	was	s;ll	linear	in	complexity	
◦ can	we	do	becer?	

6.0001	LECTURE	11	 10	

BISECTION SEARCH

1.  pick	an	index,	i,	that	divides	list	in	half	
2.  ask	if	L[i] == e
3.  if	not,	ask	if	L[i] is	larger	or	smaller	than	e
4.  L e

A	new	version	of	a	divide-and-conquer	algorithm	
§  break	into	smaller	version	of	problem	(smaller	list),	plus	

some	simple	opera;ons	
§  answer	to	smaller	version	is	answer	to	original	problem	

depending	on	answer,	search	leY	or	right	half	of for	

6.0001	LECTURE	11	 11	

BISECTION SEARCH
COMPLEXITY ANALYSIS

§ 	finish	looking
through	list	
when		

				1	=	n/2i		

				so	i	=	log	n	

	
	 §	 complexity	of	

recursion	is	
O(log	n)	–	
where	n	is	len(L)	

6.0001	LECTURE	11	 12	

	

…	

…

BISECTION SEARCH
IMPLEMENTATION 1

def bisect_search1(L, e):!

 if L == []:!

 return False!

 elif len(L) == 1:!

 return L[0] == e!

 else:!

 half = len(L)//2!

 if L[half] > e:!

 return bisect_search1(L[:half], e)!

 else:!

 return bisect_search1(L[half:], e)!

	

6.0001	LECTURE	11	 13	

COMPLEXITY OF FIRST
ETHOD
BISECTION SEARCH M

§ 	implementa5on	1	–	bisect_search1	
•  	O(log	n)	bisec;on	search	calls	

ll,	size	of	range	to	be	searched	is	cut	in	half	
	size	n,	in	worst	case	down	to	range	of	size	1	
	when	k	=	log	n	
;on	search	call	to	copy	list	
	up	each	call,	so	do	this	for	each	level	of	

(n	log	n)	
eful,	note	that	length	of	list	to	be	
d	on	each	recursive	call	
ost	to	copy	is	O(n)	and	this	dominates	the	log	
ursive	calls	

6.0001	LECTURE	11	 14	

•  On	each	recursive	ca
•  If	original	range	is	of
when	n/(2^k)	=	1;	or

• O(n)	for	each	bisec
•  This	is	the	cost	to	set
recursion		

• O(log	n)	*	O(n)	à	O
•  	if	we	are	really	car
copied	is	also	halve
•  turns	out	that	total	c
n	cost	due	to	the	rec

BISECTION SEARCH
ALTERNATIVE

§ 	s;ll	reduce	size	of	
problem	by	factor	
of	two	on	each	step	
§ 	but	just	keep	track	
of	low	and	high	
por;on	of	list	to	be	
searched	
§ 	avoid	copying	the	
list	
	
§ 	complexity	of	
recursion	is	again	
O(log	n)	–	where	n	
is	len(L)	

6.0001	LECTURE	11	 15	

def bisect_search2(L, e):!
 def bisect_search_helper(L, e, low, high):!
 if high == low:!
 return L[low] == e!
 mid = (low + high)//2!
 if L[mid] == e:!
 return True!
 elif L[mid] > e:!
 if low == mid: #nothing left to search!
 return False!
 else:!
 return bisect_search_helper(L, e, low, mid - 1)!
 else:!
 return bisect_search_helper(L, e, mid + 1, high)!
 if len(L) == 0:!
 return False!
 else:!
 return bisect_search_helper(L, e, 0, len(L) - 1)!

6.0001	LECTURE	11	 16	

BISECTION SEARCH
IMPLEMENTATION 2

COMPLEXITY OF SECOND
BISECTION SEARCH METHOD

§ 	implementa5on	2	–	bisect_search2	and	its	helper	
• O(log	n)	bisec;on	search	calls	
•  On	each	recursive	call,	size	of	range	to	be	searched	is	cut	in	half	
•  If	original	range	is	of	size	n,	in	worst	case	down	to	range	of	size	1	
when	n/(2^k)	=	1;	or	when	k	=	log	n	

• pass	list	and	indices	as	parameters	
•  list	never	copied,	just	re-passed	as	a	pointer	
•  thus	O(1)	work	on	each	recursive	call	
• O(log	n)	*	O(1)	à	O(log	n)	

6.0001	LECTURE	11	 17	

LOGARITHMIC COMPLEXITY

def intToStr(i):!
 digits = '0123456789'!
 if i == 0:!
 return '0'!
 result = ''!
 while i > 0:!
 result = digits[i%10] + result!
 i = i//10!
 return result!

!

6.0001	LECTURE	11	 18	

LOGARITHMIC COMPLEXITY

def intToStr(i):! 	 only	have	to	look	at	loop	as	

no	func;on	calls	

	 within	while	loop,	constant	
number	of	steps	

	 how	many	;mes	through	
! loop?	

◦  how	many	;mes	can	one	
divide	i	by	10?	

◦ O(log(i))	

 digits = '0123456789'!
 if i == 0:!
 return '0'!
 res = ''!
 while i > 0:!
 res = digits[i%10] + res
 i = i//10!
 return result!

	

6.0001	LECTURE	11	 19	

LINEAR COMPLEXITY

§ 	saw	this	last	;me	
◦  	searching	a	list	in	sequence	to	see	if	an	element	is	
present	

◦  	itera;ve	loops	

6.0001	LECTURE	11	 20	

O() FOR ITERATIVE FACTORIAL

er	of	itera;ve	calls	

):!

p,	constant	cost	each	

§ 	complexity	can	depend	on	numb
def fact_iter(n):!

 prod = 1!

 for i in range(1, n+1

 prod *= i!

 return prod!

§ 	overall	O(n)	–	n	;mes	round	loo
;me	

6.0001	LECTURE	11	 21	

O() FOR RECURSIVE
FACTORIAL

def fact_recur(n):!
 """ assume n >= 0 """!
 if n <= 1: !
 return 1!
 else: !
 return n*fact_recur(n – 1)!

	
t	runs	a	bit	slower	than	
	calls	
f	func;on	calls	is	linear	
p	call	
l	implementa;ons	are	

22	

§ 	computes	factorial	recursively	
§ 	if	you	;me	it,	may	no;ce	that	i
itera;ve	version	due	to	func;on
§ 	s;ll	O(n)	because	the	number	o
in	n,	and	constant	effort	to	set	u
§ 	itera5ve	and	recursive	factoria
the	same	order	of	growth	

6.0001	LECTURE	11	

LOG-LINEAR COMPLEITY

is	merge	sort	

§ 	many	prac;cal	algorithms	are	log-linear	

§ 	very	commonly	used	log-linear	algorithm	

§ 	will	return	to	this	next	lecture	

6.0001	LECTURE	11	 23	

POLYNOMIAL COMPLEXITY

§ 	most	common	polynomial	algorithms	are	quadra;c,	
i.e.,	complexity	grows	with	square	of	size	of	input	

§ 	commonly	occurs	when	we	have	nested	loops	or	
recursive	func;on	calls	

§ 	saw	this	last	;me	

6.0001	LECTURE	11	 24	

EXPONENTIAL COMPLEXITY

§ 	recursive	func;ons	where	more	than	one	recursive	
call	for	each	size	of	problem	
◦ Towers	of	Hanoi	

§ 	many	important	problems	are	inherently	exponen;al	
◦ unfortunate,	as	cost	can	be	high	
◦ will	lead	us	to	consider	approximate	solu;ons	as	may	
provide	reasonable	answer	more	quickly	

6.0001	LECTURE	11	 25	

COMPLEXITY OF TOWERS OF
HANOI

§ 	Let	tn		denote	;me	to	solve	tower	of	size	n	
§ 	tn	=	2tn-1	+	1	
§ 					=	2(2tn-2	+	1)	+	1	
§	  				=	4tn-2	+	2	+	1	
§ 					=	4(2t 	+	1)	+	2	+	1	 Geometric	growth	

n-3
	

§ 					=	8tn-3	+	4	+	2	+	1	 a	=											2n-1	+	…			+	2		+	1	
§ 					=	2k	t k-

n-k	+	2 1	+	…	+	4	+	2	+	1	 2a	=	2n	+	2n-1		+	...	+	2	
a			=	2n																												-	1	§ 					=	2n-1	+	2n-2	+	...	+	4	+	2	+	1	

§ 					=	2n	–	1	
§	 so	order	of	growth	is	O(2n)	

6.0001	LECTURE	11	 26	

EXPONENTIAL COMPLEXITY

§ 	given	a	set	of	integers	(with	no	repeats),	want	to	
generate	the	collec;on	of	all	possible	subsets	–	called	
the	power	set	

§ 	{1,	2,	3,	4}	would	generate	
◦  {},	{1},	{2},	{3},	{4},	{1,	2},	{1,	3},	{1,	4},	{2,	3},	{2,	4},	{3,	4},	
{1,	2,	3},	{1,	2,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	

§ 	order	doesn’t	macer	
◦  {},	{1},	{2},	{1,	2},	{3},	{1,	3},	{2,	3},	{1,	2,	3},	{4},	{1,	4},	{2,	
4},	{1,	2,	4},	{3,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	

6.0001	LECTURE	11	 27	

POWER SET – CONCEPT

§ we	want	to	generate	the	power	set	of	integers	from	1	to	n
§ 	assume	we	can	generate	power	set	of	integers	from	1	to	
n-1	
§ 	then	all	of	those	subsets	belong	to	bigger	power	set	

all	of	those	subsets	with	n	
long	to	the	bigger	power	set	

(choosing	not	include	n);	and	
added	to	each	of	them	also	be
(choosing	to	include	n)	
§ 	{},	{1},	{2},	{1,	2},	{3},	{1,	3},	{2,	3},	{1,
4},	{3,	4},	{1,	3,	4},	{2,	3,	4},	{1,	2,	3,	4}	

	

	2,	3},	{4},	{1,	4},	{2,	4},	{1,	2,	

	
§ 	nice	recursive	descrip;on!	

6.0001	LECTURE	11	 28	

EXPONENTIAL COMPLEXITY

def genSubsets(L):!
 res = []!
 if len(L) == 0:!
 return [[]] #list of empty list!
 smaller = genSubsets(L[:-1]) # all subsets without

 last element
last element!
 extra = L[-1:] # create a list of just
 new = []!
 for small in smaller:!
 new.append(small+extra) # for all smaller
solutions, add one with last element!
 return smaller+new # combine those with last
element and those without!

6.0001	LECTURE	11	 29	

!

EXPONENTIAL COMPLEXITY

	 assuming	append	is	
constant	;me	

	 ;me	includes	;me	to	solve	
smaller	problem,	plus	;me	

 smaller = genSubsets(L[:-1])! needed	to	make	a	copy	of	
 extra = L[-1:]! all	elements	in	smaller	
 new = []! problem	
 for small in smaller:!
 new.append(small+extra)!
 return smaller+new!

	

def genSubsets(L):!
 res = []!
 if len(L) == 0:!
 return [[]] !

6.0001	LECTURE	11	 30	

EXPONENTIAL COMPLEXITY

def genSubsets(L):! 	 but	important	to	thin
 res = []! about	size	of	smaller	
 if len(L) == 0:!

k	

 return [[]] ! 	 know	that	for	a	set	of	size	
 smaller = genSubsets(L[:-1])! k	there	are	2k	cases	
 extra = L[-1:]!
 new = []! 	 how	can	we	deduce	
 for small in smaller:! overall	complexity?	
 new.append(small+extra)!
 return smaller+new!

	

6.0001	LECTURE	11	 31	

EXPONENTIAL COMPLEXITY

§ 	let	tn	denote	;me	to	solve	problem	of	size	n	

§ 	let	sn	denote	size	of	solu;on	for	problem	of	size	n	

§ 	tn	=	tn-1	+	sn-1	+	c	(where	c	is	some	constant	number	of	
opera;ons)	

§ 	tn	=	tn-1	+	2n-1	+	c	
§ 					=	tn-2	+	2n-2	+	c	+	2n-1	+	c	

Thus	
§	  				=	tn-k	+	2n-k	+	…	+	2n-1	+	kc	 compu;ng	
§ 					=	t0	+	20	+	...	+	2n-1	+	nc	 power	set	is		
§ 					=	1	+	2n		+	nc	 O(2n)	

6.0001	LECTURE	11	 32	

COMPLEXITY CLASSES

§ 	O(1)	–	code	does	not	depend	on	size	of	problem	

§ 	O(log	n)	–	reduce	problem	in	half	each	;me	through	
process	

§ 	O(n)	–	simple	itera;ve	or	recursive	programs	

§ 	O(n	log	n)	–	will	see	next	;me	

§ 	O(nc)	–	nested	loops	or	recursive	calls	
§ 	O(cn)	–	mul;ple	recursive	calls	at	each	level		

6.0001	LECTURE	11	 33	

SOME MORE EXAMPLES OF
ANALYZING COMPLEXITY

6.0001	LECTURE	11	 34	

COMPLEXITY OF
ITERATIVE FIBONACCI

def fib_iter(n):! §  if n == 0:! 	Best	case:	
 return 0! O(1)	
 elif n == 1:!
 return 1! § 	Worst	case:	
 else:! O(1)	+	O(n)	+	O(1)	è	O(n)	 fib_i = 0!
 fib_ii = 1! 	
 for i in range(n-1):!
 tmp = fib_i!
 fib_i = fib_ii!

 fib_ii = tmp + fib_ii!
turn fib_ii !

 re

6.0001	LECTURE	11	 36	

COMPLEXITY OF
RECURSIVE FIBONACCI

def fib_recur(n):!
 """ assumes n an int >= 0 """!
 if n == 0:!
 return 0!
 elif n == 1:!
 return 1!
 else:!
 return fib_recur(n-1) + fib_recur(n-2)!

§ 	Worst	case:	
O(2n)	

6.0001	LECTURE	11	 37	

COMPLEXITY OF RECURSIVE
FIBONACCI
 fib(5)

 fib(4) fib(3)

 fib(3) fib(2) fib(2) fib(1)

 fib(2) fib(1)

§ 	actually	can	do	a	bit	becer	than	2n	since	tree	of	
cases	thins	out	to	right		
§ 	but	complexity	is	s;ll	exponen;al	

6.0001	LECTURE	11	 38	

BIG OH SUMMARY

§ 	compare	efficiency	of	algorithms	
•  	nota;on	that	describes	growth	
•  	lower	order	of	growth	is	becer	
•  	independent	of	machine	or	specific	implementa;on	

§ 	use	Big	Oh	
•  	describe	order	of	growth	
•  	asympto5c	nota5on	
•  	upper	bound	
•  	worst	case	analysis	

6.0001	LECTURE	11	 40	

COMPLEXITY OF COMMON
PYTHON FUNCTIONS

 § 	Lists:	n is	len(L) § 	Dic;onaries:	n is	len(d)
•  	index	 	O(1)	 §	 worst	case	
•  	store	 	O(1)	 •  	index	 	O(n)	
•  	length	 	O(1)	 •  	store	 	O(n)	
•  	append	 	O(1)	 •  	length	 	O(n)	
•  	==		 	O(n)	 •  	delete	 	O(n)	
•  	remove	 	O(n)	 •  	itera;on	 	O(n)	
•  	copy	 	O(n)	 §	  	average	case	
•  	reverse	 	O(n)	 •  	index	 	O(1)	
•  	itera;on	 	O(n)	 •  	store	 	O(1)	
•  	in	list 	O(n)	 •  	delete	 	O(1)	

•  	itera;on	 	O(n)	

6.0001	LECTURE	11	 41	

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

UNDERSTANDING
PROGRAM
EFFICIENCY: 1
(download slides and .py files and follow along!)

6.0001 LECTURE 10

6.0001	LECTURE	10	 1	

Today

§ 	Measuring	orders	of	growth	of	algorithms	

§ 	Big	“Oh”	notaAon	
§ 	Complexity	classes	

6.0001	LECTURE	10	 2	

WANT TO UNDERSTAND
EFFICIENCY OF PROGRAMS

§ 	computers	are	fast	and	geGng	faster	–	so	maybe	efficient	
programs	don’t	maLer?	
◦  but	data	sets	can	be	very	large	(e.g.,	in	2014,	Google	served	
30,000,000,000,000	pages,	covering	100,000,000	GB	–	how	long	to	
search	brute	force?)	

◦  thus,	simple	soluAons	may	simply	not	scale	with	size	in	acceptable	
manner	

§ 

§ 	separate	!me	and	space	efficiency	of	a	program	
§ 	tradeoff	between	them:	
◦  can	someAmes	pre-compute	results	are	stored;	then	use	“lookup”	to	
retrieve	(e.g.,	memoizaAon	for	Fibonacci)	

◦ will	focus	on	Ame	efficiency	

6.0001	LECTURE	10	 3	

	how	can	we	decide	which	opAon	for	program	is	most	efficient?	

WANT TO UNDERSTAND
EFFICIENCY OF PROGRAMS

Challenges	in	understanding	efficiency	of	soluAon	to	a	
computaAonal	problem:	

§ 	a	program	can	be	implemented	in	many	different	
ways	

§ 	you	can	solve	a	problem	using	only	a	handful	of	
different	algorithms	

§ 	would	like	to	separate	choices	of	implementaAon	
from	choices	of	more	abstract	algorithm	

6.0001	LECTURE	10	 4	

HOW TO EVALUATE
EFFICIENCY OF PROGRAMS

§ 	measure	with	a	!mer	

§ 	count	the	operaAons	
§ 	abstract	noAon	of	order	of	growth	

6.0001	LECTURE	10	 5	

TIMING A PROGRAM

§ 	use	Ame	module	

§ 	recall	that	
!imporAng	means	to	

bring	in	that	class	 def c_to_f(c):!

into	your	own	file	

 return c*9/5 + 32 !
!

§	 start	clock	 t0 = time.clock()!
§ 	call	funcAon	 c_to_f(100000)!

t1 = time.clock() - t0!
§ 	stop	clock	 Print("t =", t, ":", t1, "s,”)
	

6.0001	LECTURE	10	 6	

import time!

!

TIMING PROGRAMS IS
INCONSISTENT

§ 	GOAL:	to	evaluate	different	algorithms	
§ 	running	Ame	varies	between	algorithms	
§ 	running	Ame	varies	between	implementa!ons
§ 	running	Ame	varies	between	computers	
§ 	running	Ame	is	not	predictable	based	on	small	
inputs	

	

§ 	Ame	varies	for	different	inputs	but		
	cannot	really	express	a	relaAonship		
	between	inputs	and	Ame	

6.0001	LECTURE	10	 7	

COUNTING OPE
§ 	assume	these	steps	take	
constant	!me:	
•  	mathemaAcal	operaAons	
•  	comparisons	
•  	assignments	
•  	accessing	objects	in	memor

• 	then	count	the	number	of	
operaAons	executed	as	
funcAon	of	size	of	input	

RATIONS

def c_to_f(c):!
 return c*9.0/5 + 32 !
!
def mysum(x):!
 total = 0!

ange(x+1):!
+= i!

 for i in r
 total y	 return tot

mysum	à	1+3

al!

6.0001	LECTURE	10	 8	

x	ops	

COUNTING OPERATIONS IS
BETTER, BUT STILL…

§ 	GOAL:	to	evaluate	different	algorithms	

§ 	count	depends	on	algorithm	

§ 	count	depends	on	implementa!ons	

§ 	count	independent	of	computers	

§ 	no	clear	definiAon	of	which	opera!ons	to	count	

§ 	count	varies	for	different	inputs	and			
	can	come	up	with	a	relaAonship		
	between	inputs	and	the	count	

6.0001	LECTURE	10	 9	

STILL NEED A BETTER WAY

• 	Aming	and	counAng	evaluate	implementa!ons	

• 	Aming	evaluates	machines	

• 	want	to	evaluate	algorithm	

• 	want	to	evaluate	scalability	
• 	want	to	evaluate	in	terms	of	input	size	

6.0001	LECTURE	10	 10	

STILL NEED A BETTER WAY

§ 	Going	to	focus	on	idea	of	counAng	operaAons	in	an	
algorithm,	but	not	worry	about	small	variaAons	in	
implementaAon	(e.g.,	whether	we	take	3	or	4	primiAve	
operaAons	to	execute	the	steps	of	a	loop)	
§ 	Going	to	focus	on	how	algorithm	performs	when	size	
of	problem	gets	arbitrarily	large	
§ 	Want	to	relate	Ame	needed	to	complete	a	
computaAon,	measured	this	way,	against	the	size	of	
the	input	to	the	problem	
§ 	Need	to	decide	what	to	measure,	given	that	actual	
number	of	steps	may	depend	on	specifics	of	trial		

6.0001	LECTURE	10	 11	

NEED TO CHOOSE WHICH INPUT TO
USE TO EVALUATE A FUNCTION

§ 	want	to	express	efficiency	in	terms	of	size	of	input,	so	
need	to	decide	what	your	input	is	

§ 	could	be	an	integer		
		--	mysum(x)

§ 	could	be	length	of	list		
		--	list_sum(L)

§ 	you	decide	when	mulAple	parameters	to	a	funcAon	
		--	search_for_elmt(L, e)

6.0001	LECTURE	10	 12	

DIFFERENT INPUTS CHANGE
HOW THE PROGRAM RUNS

§ 	a	funcAon	that	searches	for	an	element	in	a	list	
def search_for_elmt(L, e):!
 for i in L:!
 if i == e:!
 return True!
 return False!

§ 	when	e	is	first	element	in	the	list	à	BEST	CASE	

§ 	when	e	is	not	in	list	à	WORST	CASE	

§ 	when	look	through	about	half	of	the	elements	in	
list	à	AVERAGE	CASE	

§ 	want	to	measure	this	behavior	in	a	general	way	

6.0001	LECTURE	10	 13	

BEST, AVERAGE, WORST CASES

§ 	suppose	you	are	given	a	list	L	of	some	length	len(L)
§ 	best	case:	minimum	running	Ame	over	all	possible	inputs	
of	a	given	size,	len(L)
•  	constant	for	search_for_elmt
•  	first	element	in	any	list	

§ 	average	case:	average	running	Ame	over	all	possible	inputs	
of	a	given	size,	len(L)
•  	pracAcal	measure	

§ 	worst	case:	maximum	running	Ame	over	all	possible	inputs	
of	a	given	size,	le
•  	linear	in	length	of

n(L)
	list	for	search_for_elmt

•  	must	search	enAre	list	and	not	find	it	

6.0001	LECTURE	10	 14	

ORDERS OF GROWTH

Goals:		
§ 	want	to	evaluate	program’s	efficiency	when	input	is	very	big	
§ 	want	to	express	the	growth	of	program’s	run	!me	as	input	
size	grows	
§ 	want	to	put	an	upper	bound	on	growth	–	as	Aght	as	possible	
§ 	do	not	need	to	be	precise:	“order	of”	not	“exact”	growth	
§ 	we	will	look	at	largest	factors	in	run	Ame	(which	secAon	of	
the	program	will	take	the	longest	to	run?)	
§ 	thus,	generally	we	want	!ght	upper	bound	on	growth,	as	
func!on	of	size	of	input,	in	worst	case	

6.0001	LECTURE	10	 15	

MEASURING ORDER OF
GROWTH: BIG OH NOTATION

§ 	Big	Oh	notaAon	measures	an	upper	bound	on	the	
asympto!c	growth,	oien	called	order	of	growth	

§ 	Big	Oh	or	O()	is	used	to	describe	worst	case	
•  	worst	case	occurs	oien	and	is	the	boLleneck	when	a	
program	runs	

•  	express	rate	of	growth	of	program	relaAve	to	the	input	
size	

•  	evaluate	algorithm	NOT	machine	or	implementaAon	

	 6.0001	LECTURE	10	 16	

	

EXACT STEPS vs O()

def fact_iter(n):!
 """assumes n an int >= 0"""!
 answer = 1!
 while n > 1:!
 answer *= n!
 n -= 1!
 return answer!

§ 	computes	factorial	
§ 	number	of	steps:	 		
§ 	worst	case	asymptoAc	complexity:		

•  	ignore	addiAve	constants	
•  	ignore	mulAplicaAve	constants	

6.0001	LECTURE	10	 17	

WHAT DOES O(N) MEASURE?

§ 	Interested	in	describing	how	amount	of	Ame	needed	
grows	as	size	of	(input	to)	problem	grows	

§ 	Thus,	given	an	expression	for	the	number	of	
operaAons	needed	to	compute	an	algorithm,	want	to	
know	asymptoAc	behavior	as	size	of	problem	gets	large	

§ 	Hence,	will	focus	on	term	that	grows	most	rapidly	in	a	
sum	of	terms	

§ 	And	will	ignore	mulAplicaAve	constants,	since	want	to	
know	how	rapidly	Ame	required	increases	as	increase	
size	of	input	

6.0001	LECTURE	10	 18	

SIMPLIFICATION EXAMPLES

§ 	drop	constants	and	mulAplicaAve	factors	
§ 	focus	on	dominant	terms	

 : n2	O(n2)	 + 2n + 2

	O(n2)	 : n2 + 100000n + 31000

	O(n)	 : log(n) + n + 4

O(n	log	n)
	 : 0.0001*n*log(n) + 300n

	O(3n)	 : 2n30 + 3n

6.0001	LECTURE	10	 19	

TYPES OF ORDERS OF
GROWTH

6.0001	LECTURE	10	 20	

ANALYZING PROGRAMS AND
THEIR COMPLEXITY

§ 	combine	complexity	classes	

•  	analyze	statements	inside	funcAons	
•  	apply	some	rules,	focus	on	dominant	term	

Law	of	Addi!on	for	O():		
•  	used	with	sequen!al	statements	
•  	O(f(n))	+	O(g(n))	is	O(f(n)	+	g(n))	
•  	for	example,	 		
 for i in range(n):!
 print('a')!
 for j in range(n*n):!
 print('b')!

is	O(n)	+	O(n*n)	=	O(n+n2)	=	O(n2)	because	of	dominant	term	
6.0001	LECTURE	10	 21	

ANALYZING PROGRAMS AND
THEIR COMPLEXITY

§ 	combine	complexity	classes	

•  	analyze	statements	inside	funcAons	
•  	apply	some	rules,	focus	on	dominant	term	

Law	of	Mul!plica!on	for	O():		
•  	used	with	nested	statements/loops	
•  	O(f(n))	*	O(g(n))	is	O(f(n)	*	g(n))	
•  	for	example,	 		
 for i in range(n):!
 for j in range(n):!
 print('a')!

is	O(n)*O(n)	=	O(n*n)	=	O(n2)	because	the	outer	loop	goes	n	
Ames	and	the	inner	loop	goes	n	Ames	for	every	outer	loop	iter.	

6.0001	LECTURE	10	 22	

COMPLEXITY CLASSES

§ 	O(1)	denotes	constant	running	Ame	
§ 	O(log	n)	denotes	logarithmic	running	Ame	
§ 	O(n)	denotes	linear	running	Ame	
§ 	O(n	log	n)	denotes	log-linear	running	Ame	
§ 	O(nc)		denotes	polynomial	running	Ame	(c	is	a	
constant)	
§ 	O(cn)	denotes	exponenAal	running	Ame	(c	is	a	
constant	being	raised	to	a	power	based	on	size	of	
input)	

6.0001	LECTURE	10	 23	

COMPLEXITY CLASSES
ORDERED LOW TO HIGH

	

	O(1) :	
	 								
	O(log n) :	
	 								
	O(n) :	
	 								
	O(n log n):	
	 								
	O

	 	
	O

(nc) :	
								

(cn) :	

	 			constant	

	logarithmic		

	 						linear	

		loglinear		 	

	 	polynomial	

	exponenAal		

6.0001	LECTURE	10	 24	

COMPLEXITY GROWTH

CLASS	 n=10	 =	100	 =	1000	 =	1000000	

O(1)	 1	 1	 1	 1	

O(log	n)	 1	 2	 3	 6	

O(n)	 10	 100	 1000	 1000000	

O(n	log	n)	 10	 200	 3000	 6000000	

O(n^2)	 100	 10000	 1000000	 1000000000000	

O(2^n)	 1024	 12676506
00228229
40149670
3205376	

1071508607186267320948425049060
0018105614048117055336074437503
8837035105112493612249319837881
5695858127594672917553146825187
1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316

52624386837205668069376	

Good	luck!!	

6.0001	LECTURE	10	 25	

LINEAR COMPLEXITY

§ 	Simple	iteraAve	loop	algorithms	are	typically	linear	in
complexity	

	

6.0001	LECTURE	10	 26	

LINEAR SEARCH
ON UNSORTED LIST

def linear_search(L, e):!
 found = False!
 for i in range(len(L)):!
 if e == L[i]:!
 found = True!
 return found!

	

§ 	must	look	through	all	elements	to	decide	it’s	not	there	

§ 	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	
◦ O(1	+	4n	+	1)	=	O(4n	+	2)	=	O(n)	

§ 	overall	complexity	is	O(n)	–	where	n	is	len(L)		

6.0001	LECTURE	12	 27	

CONSTANT TIME LIST ACCESS

§ 	if	list	is	all	ints	
◦  	ith	element	at		
◦  base	+	4*i	

§ if	list	is	heterogeneous	
◦  	indirecAon		
◦  	references	to	other	objects	

…	

…	

6.0001	LECTURE	12	 28	

LINEAR SEARCH
ON SORTED LIST

def search(L, e):!
 for i in range(len(L)):!
 if L[i] == e:!
 return True!
 if L[i] > e:!
 return False!
 return False	
§ 	must	only	look	unAl	reach	a	number	greater	than	e	
§ 	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	
§ 	overall	complexity	is	O(n)	–	where	n	is	len(L)		
§ 	NOTE:	order	of	growth	is	same,	though	run	Ame	may	
differ	for	two	search	methods	

6.0001	LECTURE	12	 29	

LINEAR COMPLEXITY

§ 	searching	a	list	in	sequence	to	see	if	an	element	is	present	
§ 	add	characters	of	a	string,	assumed	to	be	composed	of	
decimal	digits	
def addDigits(s):!

 val = 0!

 for c in s:!

 val += int(c)!

 return val!

§ 	O(len(s))	

6.0001	LECTURE	10	 30	

LINEAR COMPLEXITY

§ 	complexity	oien	depends	on	number	of	iteraAons	
def fact_iter(n):!

 prod = 1!

 for i in range(1, n+1):!

 prod *= i!

 return prod!

§ 	number	of	Ames	around	loop	is	n	
§ 	number	of	operaAons	inside	loop	is	a	constant	(in	this	case,	3	–	
set	i,	mulAply,	set	prod)	
◦  O(1	+	3n	+	1)	=	O(3n	+	2)	=	O(n)	

§ 	overall	just	O(n)	

6.0001	LECTURE	10	 31	

NESTED LOOPS

§ 	simple	loops	are	linear	in	complexity	

§ 	what	about	loops	that	have	loops	within	them?	

6.0001	LECTURE	10	 32	

QUADRATIC COMPLEXITY

determine	if	one	list	is	subset	of	second,	i.e.,	every	element	
of	first,	appears	in	second	(assume	no	duplicates)	
!
def isSubset(L1, L2):!
 for e1 in L1:!
 matched = False!
 for e2 in L2:!
 if e1 == e2:!
 matched = True!
 break!
 if not matched:!
 return False!
 return True!

6.0001	LECTURE	10	 33	

QUADRATIC COMPLEXITY

def isSubset(L1, L2):!
 for e1 in L1:!
 matched = False!
 for e2 in L2:!
 if e1 == e2:!
 matched =
 break!
 if not matched:!
 return False!
 return True!

	

	 outer	loop	executed	len(L1)	
Ames	

	 each	iteraAon	will	execute	
inner	loop	up	to	len(L2)	
Ames,	with	constant	number	True!
of	operaAons	

	 O(len(L1)*len(L2))	
	 worst	case	when	L1	and	L2	
same	length,	none	of	
elements	of	L1	in	L2	

	 O(len(L1)2)	

6.0001	LECTURE	10	 34	

QUADRATIC COMPLEXITY

find	intersecAon	of	two	lists,	return	a	list	with	each	element	
appearing	only	once!

def intersect(L1, L2):!
 tmp = []!
 for e1 in L1:!
 for e2 in L2:!
 if e1 == e2:!
 tmp.append(e1)!
 res = []!
 for e in tmp:!
 if not(e in res):!
 res.append(e)!
 return res!

6.0001	LECTURE	10	 35	

QUADRATIC COMPLEXITY

def intersect(L1, L2):!
 tmp = []!
 for e1 in L1:!
 for e2 in L2:!
 if e1 == e2:!
 tmp.append(e
 res = []!
 for e in tmp:!
 if not(e in res):!
 res.append(e)!
 return res!

	

	 first	nested	loop	takes	
len(L1)*len(L2)	steps	
	 second	loop	takes	at	
most	len(L1)	steps	

1)! 	 determining	if	element	
in	list	might	take	len(L1)	
steps	
	 if	we	assume	lists	are	of	
roughly	same	length,	
then	
	 O(len(L1)^2)	

6.0001	LECTURE	10	 36	

O() FOR NESTED LOOPS

def g(n):!
 """ assume n >= 0 """!
 x = 0!
 for i in range(n):!
 for j in range(n):!
 x += 1!
 return x!

	
§ 	computes	n2	very	inefficiently	
§ 	when	dealing	with	nested	loops,	look	at	the	ranges	
§ 	nested	loops,	each	itera!ng	n	!mes	
§ 	O(n2)	

6.0001	LECTURE	10	 37	

THIS TIME AND NEXT TIME

§ 	have	seen	examples	of	loops,	and	nested	loops	

§ 	give	rise	to	linear	and	quadraAc	complexity	algorithms	

§ 	next	Ame,	will	more	carefully	examine	examples	from	
each	of	the	different	complexity	classes	

6.0001	LECTURE	10	 38	

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

RECURSION,
DICTIONARIES
(download slides and .py files and follow along!)

6.0001 LECTURE 6

6.0001	LECTURE	6	 1	

QUIZ PREP

§ a	paper	and	an	online	component

§ open	book/notes

§ not	open	Internet,	not	open	computer

§	start	prinSng	out	whatever	you	may	want	to	bring	

6.0001	LECTURE	6	 2	

LAST TIME

§	tuples	-	immutable	

§	lists	-	mutable	

§	aliasing,	cloning		

§	mutability	side	effects	

6.0001	LECTURE	6	 3	

TODAY

§ recursion	–	divide/decrease	and	conquer

§	dicSonaries	–	another	mutable	object	type	

6.0001	LECTURE	6	 4	

RECURSION

Recursion	is	the	process	of	repeaSng	items	in	a	self-s
imilar	way.		

6.0001	LECTURE	6	 5	

WHAT IS RECURSION?

§	Algorithmically:	a	way	to	design	soluSons	to	problems	
by	divide-and-conquer	or	decrease-and-conquer
◦ reduce	a	problem	to	simpler	versions	of	the	same	
problem		

§	SemanScally:	a	programming	technique	where	a	
func0on	calls	itself	
◦ 	in	programming,	goal	is	to	NOT	have	infinite	recursion	
◦ 	must	have	1	or	more	base	cases	that	are	easy	to	solve	
◦ 	must	solve	the	same	problem	on	some	other	input	with	the	goal	
of	simplifying	the	larger	problem	input	

6.0001	LECTURE	6	 6	

ITERATIVE ALGORITHMS SO FAR

§	looping	constructs	(while	and	for	loops)	lead	to	
itera0ve	algorithms	

§	can	capture	computaSon	in	a	set	of	state	variables	
that	update	on	each	iteraSon	through	loop	

6.0001	LECTURE	6	 7	

MULTIPLICATION –
ITERATIVE SOLUTION

§	“mulSply	a	*	b”	is	equivalent	to	“add	a	to	itself	b	Smes”	

a + a + a + a + … + a §	capture	state	by		
◦ 	an	itera0on	number	(i)	starts	at	b	
 i ß i-1	and	stop	when	0	 0a 1a	 2a 3a 4a

lt)	◦ 	a	current	value	of	computa0on	(resu 	 	
 result ß result + a

def mult_iter(a, b):
 result = 0

 while b > 0:
 += aresult

b -= 1
 return result
	

6.0001	LECTURE	6	 8	

	 	 	

a*b = a + a + a + a + … + a

 = a + a + a + a + … + a

 = a + a * (b-1)

MULTIPLICATION –
RECURSIVE SOLUTION

§	recursive	step	

• 	think	how	to	reduce	
problem	to	a	simpler/
smaller	version	of	
same	problem		

§	base	case	
• 	keep	reducing	
problem	unSl	reach	a	
simple	case	that	can	
be	solved	directly	

• 	when	b	=	1,	a*b	=	a	

	
6.0001	LECTURE	6	 9	

def mult(a, b):

 if b == 1:

return a

 else:

return a + mult(a, b-1)

FACTORIAL

n! = n*(n-1)*(n-2)*(n-3)* … * 1

§	for	what	n	do	we	know	the	factorial?	
n	=	1 à if n == 1:

 return 1

§	how	to	reduce	problem?	Rewrite	in	terms	of	
something	simpler	to	reach	base	case	
n*(n-1)! 	à 	else:

 return n*factorial(n-1)

	

6.0001	LECTURE	6	 10	

RECURSIVE
FUNCTION
SCOPE
EXAMPLE

6.0001	LECTURE	6	 11	

Global	scope	

fact	 Some	
code	

fact	scope	
(call	w/	n=4)	

n	
4	

fact	scope	
(call	w/	n=3)	

n	
3	

fact	scope	
(call	w/	n=2)	

n	
2	

fact	scope	
(call	w/	n=1)	

n	
1	

def fact(n):
 if n == 1:

return 1
 else:

return n*fact(n-1)

print(fact(4))

SOME OBSERVATIONS

§	each	recursive	call	to	a	funcSon	creates	its	
own	scope/environment	

§	bindings	of	variables	in	a	scope	are	not	
changed	by	recursive	call	

§	flow	of	control	passes	back	to	previous	
scope	once	funcSon	call	returns	value	

6.0001	LECTURE	6	 12	

ITERATION vs. RECURSION

def factorial_iter(n): def factorial(n):

 prod = 1 if n == 1:

 for i in range(1,n+1): return 1

prod *= i else:

 return prod   return n*factorial(n-1)

6.0001	LECTURE	6	 13	

§ 	recursion	may	be	simpler,	more	intuiSve		
§ 	recursion	may	be	efficient	from	programmer	POV	
§ 	recursion	may	not	be	efficient	from	computer	POV	

INDUCTIVE REASONING

§	How	do	we	know	that	our	 def mult_iter(a, b):
recursive	code	will	work?	 result = 0

§	mult_iter	terminates	 while b > 0:
because	b	is	iniSally	posiSve,	 result += a
and	decreases	by	1	each	Sme	
around	loop;	thus	must	 b -= 1

eventually	become	less	than	1	 return result

§	mult	called	with	b	=	1	has	no	
recursive	call	and	stops	 def mult(a, b):

§	mult		called	with	b	>	1	makes	 if b == 1:
a	recursive	call	with	a	smaller	 return aversion	of	b;	must	eventually	
reach	call	with	b	=	1	 else:

return a + mult(a, b-1)
	

6.0001	LECTURE	6	 14	

MATHEMATICAL INDUCTION

§	To	prove	a	statement	indexed	on	integers	is	true	for	all	
values	of	n:	
◦ Prove	it	is	true	when	n	is	smallest	value	(e.g.	n	=	0	or	n	=	1)	
◦ Then	prove	that	if	it	is	true	for	an	arbitrary	value	of	n,	one	
can	show	that	it	must	be	true	for	n+1	

6.0001	LECTURE	6	 15

EXAMPLE OF INDUCTION

§	0	+	1	+	2	+	3	+	…	+	n	=	(n(n+1))/2	

§	Proof:	
◦ If	n	=	0,	then	LHS	is	0	and	RHS	is	0*1/2	=	0,	so	true	
◦ Assume	true	for	some	k,	then	need	to	show	that	
										0	+	1	+	2	+	…	+	k	+	(k+1)	=	((k+1)(k+2))/2	
◦ LHS	is	k(k+1)/2	+	(k+1)	by	assumpSon	that	property	holds	for	
problem	of	size	k	

◦ This	becomes,	by	algebra,	((k+1)(k+2))/2	
◦ Hence	expression	holds	for	all	n	>=	0	

6.0001	LECTURE	6	 16	

RELEVANCE TO CODE?

§	Same	logic	applies	

def mult(a, b):

 if b == 1:

return a

 else:

return a + mult(a, b-1)

§	Base	case,	we	can	show	that	mult must	return	correct	answer	

§	For	recursive	case,	we	can	assume	that	mult correctly	returns	an	
answer	for	problems	of	size	smaller	than	b,	then	by	the	addiSon	step,	it	
must	also	return	a	correct	answer	for	problem	of	size	b	

§	Thus	by	inducSon,	code	correctly	returns	answer	

	
6.0001	LECTURE	6	 17	

TOWERS OF HANOI

§ The	story:
◦ 3	tall	spikes
◦ Stack	of	64	different	sized	discs	–	start	on	one	spike
◦ Need	to	move	stack	to	second	spike	(at	which	point
universe	ends)

◦ Can	only	move	one	disc	at	a	Sme,	and	a	larger	disc	can
never	cover	up	a	small	disc

6.0001	LECTURE	6	 18	

TOWERS OF HANOI

§	Having	seen	a	set	of	examples	of	different	sized	
stacks,	how	would	you	write	a	program	to	print	out	the	
right	set	of	moves?	

§	Think	recursively!	
◦ Solve	a	smaller	problem	
◦ Solve	a	basic	problem	
◦ Solve	a	smaller	problem	

6.0001	LECTURE	6	 19

6.0001	LECTURE	6	 20	

def printMove(fr, to):

 print('move from ' + str(fr) + ' to ' + str(to))

def Towers(n, fr, to, spare):

 if n == 1:

printMove(fr, to)

 else:

Towers(n-1, fr, spare, to)

Towers(1, fr, to, spare)

Towers(n-1, spare, to, fr)

RECURSION WITH MULTIPLE
BASE CASES

§	Fibonacci	numbers	
◦ Leonardo	of	Pisa	(aka	Fibonacci)	modeled	the	following	
challenge	
◦ Newborn	pair	of	rabbits	(one	female,	one	male)	are	put	in	a	pen	
◦ Rabbits	mate	at	age	of	one	month	
◦ Rabbits	have	a	one	month	gestaSon	period	
◦ Assume	rabbits	never	die,	that	female	always	produces	one	new	
pair	(one	male,	one	female)	every	month	from	its	second	month	
on.	

◦ How	many	female	rabbits	are	there	at	the	end	of	one	year?	

6.0001	LECTURE	6	 21

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 22	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 23	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 24

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 25	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 26

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 27	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 28	

6.0001	LECTURE	6	 29	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 30	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 31	

FIBONACCI

	 Ayer	one	month	(call	it	0)	–	1	female	

	 Ayer	second	month	–	sSll	1	female	(now	
pregnant)	

	 Ayer	third	month	–	two	females,	one	pregnant,	
one	not	

	 In	general,	females(n)	=	females(n-1)	+	
females(n-2)	
◦ Every	female	alive	at	month	n-2	will	produce	one	
female	in	month	n;	

◦ These	can	be	added	those	alive	in	month	n-1	to	
get	total	alive	in	month	n	

Month	 Females	

0	 1	

1	 1	

2	 2	

3	 3	

4	 5	

5	 8	

6	 13	

6.0001	LECTURE	6	 32	

FIBONACCI

§	Base	cases:	
◦ Females(0)	=	1	
◦ Females(1)	=	1	

§	Recursive	case	
◦ Females(n)	=	Females(n-1)	+	Females(n-2)	

6.0001	LECTURE	6	 33	

6.0001	LECTURE	6	 34

FIBONACCI

def fib(x):

 """assumes x an int >= 0

returns Fibonacci of x""”

 if x == 0 or x == 1:

return 1

 else:

return fib(x-1) + fib(x-2)

RECURSION ON NON-
NUMERICS

§ how	to	check	if	a	string	of	characters	is	a	palindrome,	i.e.,
reads	the	same	forwards	and	backwards	
◦ “Able	was	I,	ere	I	saw	Elba”	–	avributed	to	Napoleon	
◦ “Are	we	not	drawn	onward,	we	few,	drawn	onward	to	new	era?”	–	
avributed	to	Anne	Michaels	

35

Image courtesy of wikipedia, in the public domain. By Larth_Rasnal (Own work) [GFDL (https://www.gnu.org/licenses/fdl-1.3.en.html) or
CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.

6.0001	LECTURE	6	

https://en.wikipedia.org/wiki/Napoleon#/media/File:Jacques-Louis_David_-_The_Emperor_Napoleon_in_His_Study_at_the_Tuileries_-_Google_Art_Project.jpg
https://www.gnu.org/licenses/fdl-1.3.en.html
https://creativecommons.org/licenses/by/3.0

SOLVING RECURSIVELY?

§	First,	convert	the	string	to	just	characters,	by	stripping	
out	punctuaSon,	and	converSng	upper	case	to	lower	
case	

§	Then	
◦ Base	case:	a	string	of	length	0	or	1	is	a	palindrome	
◦ Recursive	case:	
◦ If	first	character	matches	last	character,	then	is	a	palindrome	if	
middle	secSon	is	a	palindrome 		

	

6.0001	LECTURE	6	 36	

EXAMPLE

§ ‘Able	was	I,	ere	I	saw	Elba’	à	‘ablewasiereisawleba’	

§ isPalindrome(‘ablewasiereisawleba’)	
is	same	as		
◦ ‘a’ == ‘a’ and	
isPalindrome(‘blewasiereisawleb’)

6.0001	LECTURE	6	 37	

6.0001	LECTURE	6	 38	

def isPalindrome(s):

 def toChars(s):
s = s.lower()
ans = ''
for c in s:

if c in 'abcdefghijklmnopqrstuvwxyz':
ans = ans + c

return ans

 def isPal(s):
if len(s) <= 1:

return True
else:

return s[0] == s[-1] and isPal(s[1:-1])

 return isPal(toChars(s))

	
	

DIVIDE AND CONQUER

§	an	example	of	a	“divide	and	conquer”	algorithm	

§	solve	a	hard	problem	by	breaking	it	into	a	set	of	sub-
problems	such	that:	
◦ sub-problems	are	easier	to	solve	than	the	original	
◦ soluSons	of	the	sub-problems	can	be	combined	to	solve	
the	original	

6.0001	LECTURE	6	 39

DICTIONARIES

6.0001	LECTURE	6	 40	

HOW TO STORE
STUDENT INFO

§	so	far,	can	store	using	separate	lists	for	every	info	
names = ['Ana', 'John', 'Denise', 'Katy']

grade = ['B', 'A+', 'A', 'A']

course = [2.00, 6.0001, 20.002, 9.01]

§	a	separate	list	for	each	item	
§	each	list	must	have	the	same	length	
§	info	stored	across	lists	at	same	index,	each	index	refers	to	
info	for	a	different	person	
	

6.0001	LECTURE	6	 41	

HOW TO UPDATE/RETRIEVE
STUDENT INFO

def get_grade(student, name_list, grade_list, course_list):

 i = name_list.index(student)

 grade = grade_list[i]

 course = course_list[i]

 return (course, grade)

§	messy	if	have	a	lot	of	different	info	to	keep	track	of	

§	must	maintain	many	lists	and	pass	them	as	arguments	

§	must	always	index	using	integers	

§	must	remember	to	change	mulSple	lists	
6.0001	LECTURE	6	 42	

A BETTER AND CLEANER WAY –
A DICTIONARY

§	nice	to	index	item	of	interest	directly	(not	always	int)	

§	nice	to	use	one	data	structure,	no	separate	lists	

	A	list 	 	 	 	A	dic0onary	

	 Elem	1	

Elem	2	

Elem	3	

Elem	4	

…	

Key	1	

Key	2	

Key	3	

Key	4	

…	

Val	1	

Val	2	

Val	3	

Val	4	

…	

0	

1	

2	

3	

…	

6.0001	LECTURE	6	 43	

A PYTHON DICTIONARY

§	store	pairs	of	data	

• 	key	
• 	value	

my_dict = {}

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

Key	1	

Key	2	

Key	3	

…	

Val	1	

Val	2	

Val	3	

…	

key1				val1	 key2					val2	 key3											val3	 key4						val4	

6.0001	LECTURE	6	 44	

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

DICTIONARY LOOKUP

§	similar	to	indexing	into	a	list	

§	looks	up	the	key	

§	returns	the	value	associated	
with	the	key	 'A'

§	if	key	isn’t	found,	get	an	error	

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

grades['John'] à evaluates	to	'A+'

grades['Sylvan'] à gives	a	KeyError	

6.0001	LECTURE	6	 45	

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

§	add	an	entry	
grades['Sylvan'] = 'A'

§	test	if	key	in	dicSonary	
'John' in grades à returns True

 'Daniel' in grades à returns False

§	delete	entry	
del(grades['Ana'])

6.0001	LECTURE	6	 46	

'Sylvan' 'A'

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

§	get	an	iterable	that	acts	like	a	tuple	of	all	keys	
 grades.keys() à returns ['Denise','Katy','John','Ana']

§	get	an	iterable	that	acts	like	a	tuple	of	all	values	
grades.values() à returns ['A', 'A', 'A+', 'B']

6.0001	LECTURE	6	 47	

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY KEYS and VALUES

§	values		

• 	any	type	(immutable	and	mutable)	
• 	can	be	duplicates	
• 	dicSonary	values	can	be	lists,	even	other	dicSonaries!	

§	keys	
• 	must	be	unique		
• 	immutable	type	(int,	float,	string,	tuple,bool)	

• actually	need	an	object	that	is	hashable,	but	think	of	as	immutable	as	all	
immutable	types	are	hashable	

• 	careful	with	float	type	as	a	key	

§	no	order	to	keys	or	values!	
d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}	

6.0001	LECTURE	6	 48	

list vs dict

6.0001	LECTURE	6	 49	

§	ordered	sequence	of	 §	matches	“keys”	to	
elements	 “values”	

§	look	up	elements	by	an	 §	look	up	one	item	by	
integer	index another	item	

§	indices	have	an	order	 §	no	order	is	guaranteed	

§	index	is	an	integer	 §	key	can	be	any	
immutable	type	

EXAMPLE: 3 FUNCTIONS TO
ANALYZE SONG LYRICS

1)	create	a	frequency	dic0onary	mapping	str:int

2)	find	word	that	occurs	the	most	and	how	many	Smes	
• 	use	a	list,	in	case	there	is	more	than	one	word	
• 	return	a	tuple	(list,int)	for		(words_list,	highest_freq)	

3)	find	the	words	that	occur	at	least	X	0mes	
• 	let	user	choose	“at	least	X	Smes”,	so	allow	as	parameter	
• 	return	a	list	of	tuples,	each	tuple	is	a	(list, int)
containing	the	list	of	words	ordered	by	their	frequency	

• 	IDEA:	From	song	dicSonary,	find	most	frequent	word.	Delete	
most	common	word.	Repeat.	It	works	because	you	are	

g	dicSonary.	

6.0001	LECTURE	6	 50

mutaSng	the	son

CREATING A DICTIONARY

def lyrics_to_frequencies(lyrics):
 myDict = {}

 for word in lyrics:

if word in myDict:

myDict[word] += 1

else:

myDict[word] = 1

 return myDict

6.0001	LECTURE	6	 51	

USING THE DICTIONARY

def most_common_words(freqs):

 values = freqs.values()

 best = max(values)

 words = []

 for k in freqs:

if freqs[k] == best:

words.append(k)

 return (words, best)

6.0001	LECTURE	6	 52

LEVERAGING DICTIONARY
PROPERTIES

def words_often(freqs, minTimes):
 result = []
 done = False
 while not done:

temp = most_common_words(freqs)
if temp[1] >= minTimes:

result.append(temp)
for w in temp[0]:

del(freqs[w])
else:

done = True
 return result

print(words_often(beatles, 5))

6.0001	LECTURE	6	 53	

FIBONACCI RECURSIVE CODE

def fib(n):

 if n == 1:

return 1

 elif n == 2:

return 2

 else:

return fib(n-1) + fib(n-2)

§	two	base	cases	
§	calls	itself	twice	
§	this	code	is	inefficient	

6.0001	LECTURE	6	 54	

INEFFICIENT FIBONACCI
fib(n) = fib(n-1) + fib(n-2)

§	recalcula0ng	the	same	values	many	Smes!	
§	could	keep	track	of	already	calculated	values	

6.0001	LECTURE	6	 55	

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(1)

fib(2) fib(1)

fib(2)

FIBONACCI WITH A
DICTIONARY

def fib_efficient(n, d):
 if n in d:

return d[n]
 else:

ans = fib_efficient(n-1, d) + fib_efficient(n-2, d)
d[n] = ans
return ans

d = {1:1, 2:2}
print(fib_efficient(6, d))

§	do	a	lookup	first	in	case	already	calculated	the	value	
§	modify	dic0onary	as	progress	through	funcSon	calls	

6.0001	LECTURE	6	 56	

EFFICIENCY GAINS

§ Calling	fib(34)	results	in	11,405,773	recursive	calls	to
the	procedure	
§ Calling	fib_efficient(34)	results	in	65	recursive	calls	to
the	procedure	
§	Using	dicSonaries	to	capture	intermediate	results	can	
be	very	efficient	
§	But	note	that	this	only	works	for	procedures	without	
side	effects	(i.e.,	the	procedure	will	always	produce	the	
same	result	for	a	specific	argument	independent	of	any	
other	computaSons	between	calls)	

6.0001	LECTURE	6	 57

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

SEARCHING AND
SORTING
ALGORITHMS
(download slides and .py files and follow along!)

6.0001 LECTURE 12

6.0001	LECTURE	12	 1	

SEARCH ALGORITHMS

§	search	algorithm	–	method	for	finding	an	item	or	
group	of	items	with	specific	properAes	within	a	
collecAon	of	items	
§	collecAon	could	be	implicit	
◦ example	–	find	square	root	as	a	search	problem	
◦ exhausAve	enumeraAon	
◦ bisecAon	search	
◦ Newton-Raphson	

§	collecAon	could	be	explicit	
◦ example	–	is	a	student	record	in	a	stored	collecAon	of	
data?	

6.0001	LECTURE	12	 2	

SEARCHING ALGORITHMS

§	linear	search	
• 	brute	force	search	(aka	BriAsh	Museum	algorithm)	
• 	list	does	not	have	to	be	sorted	

§	bisecAon	search	
• 	list	MUST	be	sorted	to	give	correct	answer	
• 	saw	two	different	implementaAons	of	the	algorithm	

6.0001	LECTURE	12	 3	

LINEAR SEARCH
ON UNSORTED LIST: RECAP

def linear_search(L, e):
 found = False
 for i in range(len(L)):

if e == L[i]:
found = True

 return found

	

§	must	look	through	all	elements	to	decide	it’s	not	there	

§	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	

§	overall	complexity	is	O(n)	–	where	n	is	len(L)		

6.0001	LECTURE	12	 4	

LINEAR SEARCH
ON SORTED LIST: RECAP

def search(L, e):
 for i in range(len(L)):
 if L[i] == e:
 return True
 if L[i] > e:
 return False
 return False

	

§ 	must	only	look	unAl	reach	a	number	greater	than	e	

§ 	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	
§ 	overall	complexity	is	O(n)	–	where	n	is	len(L)		

6.0001	LECTURE	12	 5	

USE BISECTION SEARCH:
RECAP

1. Pick	an	index,	i,	that	divides	list	in	half	
2. Ask	if	L[i] == e
3. If	not,	ask	if	L[i] is	larger	or	smaller	than	e
4. Depending	on	answer,	search	le_	or	right	half	of L for	e

A	new	version	of	a	divide-and-conquer	algorithm	
§ Break	into	smaller	version	of	problem	(smaller	list),	plus	

some	simple	operaAons	
§ Answer	to	smaller	version	is	answer	to	original	problem	

6.0001	LECTURE	12	 6	

def bisect_search2(L, e):
 def bisect_search_helper(L, e, low, high):

if high == low:
return L[low] == e

mid = (low + high)//2
if L[mid] == e:

return True
elif L[mid] > e:

if low == mid: #nothing left to search
return False

else:
return bisect_search_helper(L, e, low, mid - 1)

else:
return bisect_search_helper(L, e, mid + 1, high)

 if len(L) == 0:
return False

 else:
return bisect_search_helper(L, e, 0, len(L) - 1)

BISECTION SEARCH
IMPLEMENTATION: RECAP

6.0001	LECTURE	12	 7	

COMPLEXITY OF BISECTION
SEARCH: RECAP

§	bisect_search2	and	its	helper	
• 	O(log	n)	bisecAon	search	calls	
• reduce	size	of	problem	by	factor	of	2	on	each	step	
• 	pass	list	and	indices	as	parameters	
• 	list	never	copied,	just	re-passed	as	pointer	
• 	constant	work	inside	funcAon	
• 	à	O(log	n)	

6.0001	LECTURE	12	 8	

SEARCHING A SORTED LIST
-- n is len(L)

§	using	linear	search,	search	for	an	element	is	O(n)	

§	using	binary	search,	can	search	for	an	element	in	O(log	n)	
• 	assumes	the	list	is	sorted!	

§	when	does	it	make	sense	to	sort	first	then	search?	
• 	SORT	+	O(log n)	<	O(n) 		à	SORT	<	O(n)	–	O(log n)	
• 	when	sorAng	is	less	than	O(n)	

•	NEVER	TRUE!	
• to	sort	a	collecEon	of	n	elements	must	look	at	each	one	at	
least	once!	

6.0001	LECTURE	12	 9	

AMORTIZED COST
-- n is len(L)

§ 	why	bother	sorAng	first?	
§ 	in	some	cases,	may	sort	a	list	once	then	do	many	
searches	

§ 	AMORTIZE	cost	of	the	sort	over	many	searches	

§ 	SORT	+	K*O(log n)	<	K*O(n)	 		
		à	for	large	K,	SORT	Eme	becomes	irrelevant,	if	

cost	of	sorAng	is	small	enough	

6.0001	LECTURE	12	 10	

SORT ALGORITHMS

§	Want	to	efficiently	sort	a	list	of	entries	(typically	
numbers)	

§	Will	see	a	range	of	methods,	including	one	that	is	
quite	efficient	

6.0001	LECTURE	12	 11	

MONKEY SORT

§	aka	bogosort,	stupid	
sort,	slowsort,	
permutaAon	sort,	
shotgun	sort	

§	to	sort	a	deck	of	cards	
• 	throw	them	in	the	air	
• 	pick	them	up	
• 	are	they	sorted?		
• 	repeat	if	not	sorted	

6.0001	LECTURE	12	 12	

COMPLEXITY OF BOGO SORT

def bogo_sort(L):
 while not is_sorted(L):
 random.shuffle(L)

§ 	best	case:	O(n)	where	n	is	len(L)	to	check	if	sorted	
§ 	worst	case:	O(?)	it	is	unbounded	if	really	unlucky	

6.0001	LECTURE	12	 13	

BUBBLE SORT

§ compare	consecuEve	pairs
of	elements	
§ swap	elements	in	pair	such
that	smaller	is	first	
§ when	reach	end	of	list,
start	over	again	
§ stop	when	no	more	swaps
have	been	made	
§ largest	unsorted	element
always	at	end	a_er	pass,	so	

6.0001	LECTURE	12	 14	

at	most	n	passes	
CC-BY	Hydrargyrum		
https://commons.wikimedia.org/wiki/File:Bubble_sort_animation.gif�

https://commons.wikimedia.org/wiki/File:Bubble_sort_animation.gif

COMPLEXITY OF BUBBLE SORT

def bubble_sort(L):
 swap = False
 while not swap:

swap = True
for j in range(1, len(L)):

if L[j-1] > L[j]:
swap = False
temp = L[j]
L[j] = L[j-1]
L[j-1] = temp

§	inner	for	loop	is	for	doing	the	comparisons
§	outer	while	loop	is	for	doing	mulEple	passes	unAl	no	more	
swaps	
§	O(n2)	where	n	is	len(L) 	
	to	do	len(L)-1	comparisons	and	len(L)-1	passes	

6.0001	LECTURE	12	 15	

SELECTION SORT

§ 	first	step	
•  	extract	minimum	element		
•  	swap	it	with	element	at	index	0	

§ 	subsequent	step	
•  	in	remaining	sublist,	extract	minimum	element	
•  	swap	it	with	the	element	at	index	1		

§ 	keep	the	le_	porAon	of	the	list	sorted		
•  	at	i’th	step,	first	i	elements	in	list	are	sorted	
•  	all	other	elements	are	bigger	than	first	i	elements	

6.0001	LECTURE	12	 16	

ANALYZING SELECTION SORT

§	loop	invariant	
◦ given	prefix	of	list	L[0:i]	and	suffix	L[i+1:len(L)],	then	
prefix	is	sorted	and	no	element	in	prefix	is	larger	than	
smallest	element	in	suffix	
1. base	case:	prefix	empty,	suffix	whole	list	–	invariant	

true	
2. inducAon	step:	move	minimum	element	from	suffix	

to	end	of	prefix.		Since	invariant	true	before	move,	
prefix	sorted	a_er	append	

3. when	exit,	prefix	is	enAre	list,	suffix	empty,	so	sorted	

6.0001	LECTURE	12	 17	

COMPLEXITY OF SELECTION
SORT

def selection_sort(L):
 suffixSt = 0
 while suffixSt != len(L):

for i in range(suffixSt, len(L)):
if L[i] < L[suffixSt]:

L[suffixSt], L[i] = L[i], L[suffixSt]
suffixSt += 1	

§	outer	loop	executes	len(L)	Ames	

§	inner	loop	executes	len(L)	–	i	Ames	

§	complexity	of	selecAon	sort	is	O(n2)	where	n	is	len(L)	

6.0001	LECTURE	12	 18	

MERGE SORT

§	use	a	divide-and-conquer	approach:	

1. if	list	is	of	length	0	or	1,	already	sorted	
2. if	list	has	more	than	one	element,	split	into	two	lists,	

and	sort	each	
3. merge	sorted	sublists	

1. look	at	first	element	of	each,	move	smaller	to	end	of	the	
result	

2. when	one	list	empty,	just	copy	rest	of	other	list	

6.0001	LECTURE	12	 19

MERGE SORT

§ 	divide	and	conquer	

§ 	split	list	in	half	unAl	have	sublists	of	only	1	element	

unsorted	

unsorted	 unsorted	

unsorted	 unsorted	 unsorted	 unsorted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

merge	 merge	 merge	 merge	 merge	 merge	 merge	 merge	

6.0001	LECTURE	12	 22	

MERGE SORT

§ 	divide	and	conquer	

	

	

§ 	merge	such	that	sublists	will	be	sorted	aQer	merge	

unsorted	

unsorted	 unsorted	

unsorted	 unsorted	 unsorted	 unsorted	

sort	 sort	 sort	 sort	 sort	 sort	 sort	 sort	

merge	 merge	 merge	 merge	

6.0001	LECTURE	12	 23	

MERGE SORT

§	divide	and	conquer	

§	merge	sorted	sublists	

§	sublists	will	be	sorted	a_er	merge	

unsorted	

unsorted	 unsorted	

sorted	 sorted	 sorted	 sorted	

merge	 merge	

6.0001	LECTURE	12	 22	

MERGE SORT

§ divide	and	conquer

§merge	sorted	sublists

§	sublists	will	be	sorted	a_er	merge	

unsorted	

sorted	 sorted	

merge	

6.0001	LECTURE	12	 23	

MERGE SORT

§	divide	and	conquer	–	done!	

sorted	

6.0001	LECTURE	12	 24	

EXAMPLE OF MERGING

Le_	in	list	1															Le_	in	list	2						Compare									Result	
[1,5,12,18,19,20]					[2,3,4,17]									1,	2																			[]	
[5,12,18,19,20]									[2,3,4,17]									5,	2																		[1]	
[5,12,18,19,20]									[3,4,17]												5,	3																		[1,2]	
[5,12,18,19,20]									[4,17]															5,	4																		[1,2,3]	
[5,12,18,19,20]									[17]																		5,	17																[1,2,3,4]	
[12,18,19,20]												[17]																		12,	17														[1,2,3,4,5]	
[18,19,20]																		[17]																		18,	17													[1,2,3,4,5,12]	
[18,19,20]																		[]																						18,	--															[1,2,3,4,5,12,17]	
[]																																		[]																																														[1,2,3,4,5,12,17,18,19,20]	

6.0001	LECTURE	12	 25	

MERGING SUBLISTS STEP

def merge(left, right):
 result = []
 i,j = 0,0
 while i < len(left) and j < len(right):

if left[i] < right[j]:
result.append(left[i])
i += 1

else:
result.append(right[j])
j += 1

 while (i < len(left)):
result.append(left[i])
i += 1

 while (j < len(right)):
result.append(right[j])
j += 1

 return result

6.0001	LECTURE	12	 26	

COMPLEXITY OF
MERGING SUBLISTS STEP

§	go	through	two	lists,	only	one	pass	

§	compare	only	smallest	elements	in	each	sublist	

§	O(len(le_)	+	len(right))	copied	elements	

§	O(len(longer	list))	comparisons	

§	linear	in	length	of	the	lists	

6.0001	LECTURE	12	 27	

MERGE SORT ALGORITHM
-- RECURSIVE

def merge_sort(L):
 if len(L) < 2:

return L[:]
 else:

middle = len(L)//2
left = merge_sort(L[:middle])
right = merge_sort(L[middle:])
return merge(left, right)

§	divide	list	successively	into	halves	

§	depth-first	such	that	conquer	smallest	pieces	down	
one	branch	first	before	moving	to	larger	pieces	

6.0001	LECTURE	12	 28	

8	4	1	6	5	9	2	0	
	
	
	

8	4	1	6	
	
	
	

8	4		
	
	
	

8		
	

base	
case	

4	
	

base	
case	

1	6	
	
	
	

1		
	

base	
case	

6	
	

base	
case	

Merge	
4	8	

Merge	
4	8		&	1	6	
1	4	6	8	

Merge	
1	6	

5	9	2	0	
	
	
	

5	9	
	
	
	

5		
	

base	
case	

9	
	

base	
case	

2	0	
	
	
	

2		
	

base	
case	

0	
	

base	
case	

Merge	
5	9	

Merge	
5	9		&	0	2	
0	2	5	9	

Merge	
0	2	

Merge	
	1	4	6	8		&	0	2	5	9	
0	1	2	4	5	6	8	9	

6.0001	LECTURE	12	 29	

COMPLEXITY OF MERGE SORT

§	at	first	recursion	level	
• 	n/2	elements	in	each	list	
• 	O(n)	+	O(n)	=	O(n)	where	n	is	len(L)	

§	at	second	recursion	level	
• 	n/4	elements	in	each	list	
• 	two	merges	à	O(n)	where	n	is	len(L)	

§	each	recursion	level	is	O(n)	where	n	is	len(L)		
§	dividing	list	in	half	with	each	recursive	call	
• O(log(n))	where	n	is	len(L)	

§	overall	complexity	is	O(n	log(n))	where	n	is	len(L)	

6.0001	LECTURE	12	 30	

SORTING SUMMARY
-- n is len(L)

§	bogo	sort	
• 	randomness,	unbounded	O()	

§	bubble	sort	
• 	O(n2)	

§	selecAon	sort	
• 	O(n2)	
• 	guaranteed	the	first	i	elements	were	sorted	

§	merge	sort	
• 	O(n	log(n))	

§	O(n	log(n))	is	the	fastest	a	sort	can	be	

6.0001	LECTURE	12	 31	

WHAT HAVE WE SEEN
IN 6.0001?

6.0001	LECTURE	12	 32	

KEY TOPICS

§	represent	knowledge	with	data	structures	

§	iteraEon	and	recursion	as	computaAonal	metaphors	

§	abstracEon	of	procedures	and	data	types	

§	organize	and	modularize	systems	using	object	classes	
and	methods	

§	different	classes	of	algorithms,	searching	and	sorAng	

§	complexity	of	algorithms	

6.0001	LECTURE	12	 33	

OVERVIEW OF COURSE

§	learn	computaAonal	modes	of	
thinking	

§	begin	to	master	the	art	of	
computaAonal	problem	solving	

§	make	computers	do	what	you	want	
them	to	do	

6.0001	LECTURE	12	 34	

Hope	we	have	started	you	down	the	
path	to	being	able	to	think	and	act	
like	a	computer	scienAst	

sgoe12
Rectangle

gkap11
Line

WHAT DO COMPUTER
SCIENTISTS DO?

§	they	think	computaAonally	
◦ 	abstracAons,	algorithms,	
automated	execuAon	

§	just	like	the	three	r’s:		reading,	
‘riting,	and	‘rithmeAc	–	
computaAonal	thinking	is	
becoming	a	fundamental	skill	that
every	well-educated	person	will	
need	

35

I											6.0001	

Ada	Lovelace	Alan	Turing	

6.0001	LECTURE	12	

Image in the Public
Domain, courtesy of
Wikipedia Commons.

Image in the Public
Domain, courtesy of
Wikipedia Commons.

gkap11
Line

https://en.wikipedia.org/wiki/Alan_Turing#/media/File:Alan_Turing_Aged_16.jpg
https://en.wikipedia.org/wiki/Ada_Lovelace#/media/File:Ada_Lovelace.jpg

THE THREE A’S OF
COMPUTATIONAL THINKING

§	abstracAon	
◦ choosing	the	right	abstracAons	
◦ operaAng	in	mulAple	layers	of	abstracAon	
simultaneously	

◦ defining	the	relaAonships	between	the	abstracAon	
layers	

§	automaAon	
◦ think	in	terms	of	mechanizing	our	abstracAons	
◦ mechanizaAon	is	possible	–	because	we	have	precise	
and	exacAng	notaAons	and	models;	and	because	there	is	
some	“machine”	that	can	interpret	our	notaAons	

§	algorithms	
◦ language	for	describing	automated	processes	
◦ also	allows	abstracAon	of	details	
◦ language	for	communicaAng	ideas	&	processes	

36 6.0001	LECTURE	12	

Person	

MITPerson	

Student	

UG	 Grad	

ASPECTS OF COMPUTATIONAL
THINKING

§	how	difficult	is	this	problem	
and	how	best	can	I	solve	it?	
◦ theoreAcal	computer	science	
gives	precise	meaning	to	these	
and	related	quesAons	and	their	
answers	

§	thinking	recursively	
◦ reformulaAng	a	seemingly	
difficult	problem	into	one	
which	we	know	how	to	solve	

◦ reduc�tion,	embedding,	
transformation,� 	simulaAon	

37

O(log	n)	;	O(n)	;		
O(n	log	n)	;		
O(n2);	O(cn)		

6.0001	LECTURE	12	

Image Licensed CC-BY, Courtesy of Robson# on Flickr.	

gkap11
Line

gkap11
Rectangle

https://www.flickr.com/photos/_robson_/8952213840

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

STRING MANIPULATION,
GUESS-and-CHECK,
APPROXIMATIONS,
BISECTION
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 3

6.0001 LECTURE 3 1

LAST TIME
 strings

 branching – if/elif/else

 while loops

 for loops

6.0001 LECTURE 3 2

TODAY
 string manipulation

 guess and check algorithms

 approximate solutions

 bisection method

6.0001 LECTURE 3 3

STRINGS
 think of as a sequence of case sensitive characters

 can compare strings with ==, >, < etc.

 len() is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s)  evaluates to 3

6.0001 LECTURE 3 4

STRINGS
 square brackets used to perform indexing into a string
to get the value at a certain index/position
s = "abc"

s[0]  evaluates to "a"
s[1]  evaluates to "b"
s[2]  evaluates to "c"
s[3]  trying to index out of bounds, error
s[-1]  evaluates to "c"
s[-2]  evaluates to "b"
s[-3]  evaluates to "a"

6.0001 LECTURE 3 5

index: 0 1 2  indexing always starts at 0

index: -3 -2 -1  last element always at index -1

STRINGS
 can slice strings using [start:stop:step]

 if give two numbers, [start:stop], step=1 by default

 you can also omit numbers and leave just colons

6.0001 LECTURE 3 6

s = "abcdefgh"

s[3:6]  evaluates to "def", same as s[3:6:1]

s[3:6:2]  evaluates to "df"

s[::]  evaluates to "abcdefgh", same as s[0:len(s):1]

s[::-1]  evaluates to "hgfedbca", same as s[-1:-(len(s)+1):-1]

s[4:1:-2] evaluates to "ec"

STRINGS
 strings are “immutable” – cannot be modified

s = "hello"

s[0] = 'y'  gives an error

s = 'y'+s[1:len(s)]  is allowed,
s bound to new object

6.0001 LECTURE 3 7

s

"hello"

"yello"

for LOOPS RECAP
 for loops have a loop variable that iterates over a set of
values

for var in range(4):  var iterates over values 0,1,2,3

<expressions>  expressions inside loop executed
with each value for var

for var in range(4,6):  var iterates over values 4,5
<expressions>

 range is a way to iterate over numbers, but a for loop
variable can iterate over any set of values, not just numbers!

6.0001 LECTURE 3 8

STRINGS AND LOOPS
 these two code snippets do the same thing

 bottom one is more “pythonic”

s = "abcdefgh"

for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':

print("There is an i or u")

for char in s:

if char == 'i' or char == 'u':

print("There is an i or u")

6.0001 LECTURE 3 9

CODE EXAMPLE:
ROBOT CHEERLEADERS
an_letters = "aefhilmnorsxAEFHILMNORSX"

word = input("I will cheer for you! Enter a word: ")

times = int(input("Enthusiasm level (1-10): "))

i = 0

while i < len(word):

char = word[i]

if char in an_letters:

print("Give me an " + char + "! " + char)

else:

print("Give me a " + char + "! " + char)

i += 1

print("What does that spell?")

for i in range(times):

print(word, "!!!")

6.0001 LECTURE 3 10

for char in word:

EXERCISE
s1 = "mit u rock"

s2 = "i rule mit"

if len(s1) == len(s2):

for char1 in s1:

for char2 in s2:

if char1 == char2:

print("common letter")

break

6.0001 LECTURE 3 11

GUESS-AND-CHECK
 the process below also called exhaustive enumeration

 given a problem…

 you are able to guess a value for solution

 you are able to check if the solution is correct

 keep guessing until find solution or guessed all values

6.0001 LECTURE 3 12

GUESS-AND-CHECK
– cube root
cube = 8

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)

6.0001 LECTURE 3 13

GUESS-AND-CHECK
– cube root
cube = 8

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, 'is not a perfect cube')

else:

if cube < 0:

guess = -guess

print('Cube root of '+str(cube)+' is '+str(guess))

6.0001 LECTURE 3 14

APPROXIMATE SOLUTIONS
 good enough solution

 start with a guess and increment by some small value

 keep guessing if |guess3-cube| >= epsilon
for some small epsilon

 decreasing increment size  slower program

 increasing epsilon  less accurate answer

6.0001 LECTURE 3 15

APPROXIMATE SOLUTION
– cube root
cube = 27

epsilon = 0.01

guess = 0.0

increment = 0.0001

num_guesses = 0

while abs(guess**3 - cube) >= epsilon:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

if abs(guess**3 - cube) >= epsilon:

print('Failed on cube root of', cube)

else:

print(guess, 'is close to the cube root of', cube)

and guess <= cube :

6.0001 LECTURE 3 16

BISECTION SEARCH
 half interval each iteration

 new guess is halfway in between

 to illustrate, let’s play a game!

6.0001 LECTURE 3 17

GUESS

GUESS

GUESS

BISECTION SEARCH
– cube root
cube = 27

epsilon = 0.01

num_guesses = 0

low = 0

high = cube

guess = (high + low)/2.0

while abs(guess**3 - cube) >= epsilon:

if guess**3 < cube :

low = guess

else:

high = guess

guess = (high + low)/2.0

num_guesses += 1

print 'num_guesses =', num_guesses

print guess, 'is close to the cube root of', cube

6.0001 LECTURE 3 18

BISECTION SEARCH
CONVERGENCE
 search space

◦ first guess: N/2
◦ second guess: N/4
◦ kth guess: N/2k

 guess converges on the order of log2N steps

 bisection search works when value of function varies
monotonically with input

 code as shown only works for positive cubes > 1 – why?

 challenges modify to work with negative cubes!
modify to work with x < 1!

6.0001 LECTURE 3 19

x < 1
 if x < 1, search space is 0 to x but cube root is greater
than x and less than 1

modify the code to choose the search space
depending on value of x

6.0001 LECTURE 3 20

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

TESTING, DEBUGGING,
EXCEPTIONS, ASSERTIONS
(download slides and .py files and follow along!)

6.0001 LECTURE 7

6.0001 LECTURE 7 1

WE AIM FOR HIGH QUALITY –
AN ANALOGY WITH SOUP

You are making soup but bugs keep falling in from the
ceiling. What do you do?

 check soup for bugs
• testing

 keep lid closed
• defensive

programming

 clean kitchen
• eliminate source

of bugs
Analogy thanks to Prof Srini Devadas

6.0001 LECTURE 7 2

DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output

pairs to specification
• “It’s not working!”
• “How can I break my

program?”

DEBUGGING
• Study events leading up

to an error
• “Why is it not working?”
• “How can I fix my

program?”

6.0001 LECTURE 7 3

SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING
 from the start, design code to ease this part

 break program up into modules that can be tested
and debugged individually

 document constraints on modules
• what do you expect the input to be?

• what do you expect the output to be?

 document assumptions behind code design

6.0001 LECTURE 7 4

WHEN ARE YOU READY TO
TEST?
 ensure code runs
• remove syntax errors

• remove static semantic errors

• Python interpreter can usually find these for you

 have a set of expected results
• an input set

• for each input, the expected output

6.0001 LECTURE 7 5

CLASSES OF TESTS
 Unit testing
• validate each piece of program

• testing each function separately

 Regression testing
• add test for bugs as you find them

• catch reintroduced errors that were previously fixed

 Integration testing
• does overall program work?

• tend to rush to do this

6.0001 LECTURE 7 6

TESTING APPROACHES
 intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints

Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 if no natural partitions, might do random testing
• probability that code is correct increases with more tests
• better options below

 black box testing
• explore paths through specification

 glass box testing
• explore paths through code

6.0001 LECTURE 7 7

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

 designed without looking at the code

 can be done by someone other than the implementer to
avoid some implementer biases

 testing can be reused if implementation changes

 paths through specification
• build test cases in different natural space partitions

• also consider boundary conditions (empty lists, singleton
list, large numbers, small numbers)

BLACK BOX TESTING

6.0001 LECTURE 7 8

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

6.0001 LECTURE 7 9

CASE x eps

boundary 0 0.0001

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0 1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0 2.0**64.0

GLASS BOX TESTING
 use code directly to guide design of test cases

 called path-complete if every potential path through
code is tested at least once

 what are some drawbacks of this type of testing?
• can go through loops arbitrarily many times

• missing paths

 guidelines
• branches

• for loops

• while loops

6.0001 LECTURE 7 10

GLASS BOX TESTING
def abs(x):

""" Assumes x is an int

Returns x if x>=0 and –x otherwise """

if x < -1:

return –x

else:

return x

 a path-complete test suite could miss a bug

 path-complete test suite: 2 and -2

 but abs(-1) incorrectly returns -1

 should still test boundary cases

6.0001 LECTURE 7 11

DEBUGGING
 steep learning curve

 goal is to have a bug-free program

 tools
• built in to IDLE and Anaconda

• Python Tutor

• print statement

• use your brain, be systematic in your hunt

6.0001 LECTURE 7 12

PRINT STATEMENTS
 good way to test hypothesis

 when to print
• enter function

• parameters

• function results

 use bisection method
• put print halfway in code

• decide where bug may be depending on values

6.0001 LECTURE 7 13

DEBUGGING STEPS
 study program code
• don’t ask what is wrong

• ask how did I get the unexpected result

• is it part of a family?

 scientific method
• study available data

• form hypothesis

• repeatable experiments

• pick simplest input to test with

6.0001 LECTURE 7 14

ERROR MESSAGES – EASY
 trying to access beyond the limits of a list
test = [1,2,3] then test[4]  IndexError

 trying to convert an inappropriate type
int(test)  TypeError

 referencing a non-existent variable
a  NameError

 mixing data types without appropriate coercion
'3'/4  TypeError

 forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]

print(a)  SyntaxError

6.0001 LECTURE 7 15

LOGIC ERRORS - HARD
 think before writing new code

 draw pictures, take a break

 explain the code to
• someone else

• a rubber ducky

6.0001 LECTURE 7 16

DON’T DO
• Write entire program
• Test entire program
• Debug entire program

• Write a function
• Test the function, debug the function
• Write a function
• Test the function, debug the function
• *** Do integration testing ***

• Change code
• Remember where bug was
• Test code
• Forget where bug was or what change

you made
• Panic

• Backup code
• Change code
• Write down potential bug in a

comment
• Test code
• Compare new version with old

version

6.0001 LECTURE 7 17

EXCEPTIONS AND ASSERTIONS
 what happens when procedure execution hits an
unexpected condition?

 get an exception… to what was expected
• trying to access beyond list limits

test = [1,7,4]

test[4]  IndexError

• trying to convert an inappropriate type
int(test)  TypeError

• referencing a non-existing variable
a  NameError

• mixing data types without coercion
'a'/4  TypeError

6.0001 LECTURE 7 18

OTHER TYPES OF EXCEPTIONS
 already seen common error types:
• SyntaxError: Python can’t parse program

• NameError: local or global name not found

• AttributeError: attribute reference fails

• TypeError: operand doesn’t have correct type

• ValueError: operand type okay, but value is illegal

• IOError: IO system reports malfunction (e.g. file not
found)

6.0001 LECTURE 7 19

DEALING WITH EXCEPTIONS
 Python code can provide handlers for exceptions

try:

a = int(input("Tell me one number:"))

b = int(input("Tell me another number:"))

print(a/b)

except:

print("Bug in user input.")

 exceptions raised by any statement in body of try are
handled by the except statement and execution continues
with the body of the except statement

6.0001 LECTURE 7 20

HANDLING SPECIFIC
EXCEPTIONS
 have separate except clauses to deal with a particular
type of exception
try:

a = int(input("Tell me one number: "))

b = int(input("Tell me another number: "))

print("a/b = ", a/b)

print("a+b = ", a+b)

except ValueError:

print("Could not convert to a number.")

except ZeroDivisionError:

print("Can't divide by zero")

except:

print("Something went very wrong.")

6.0001 LECTURE 7 21

OTHER EXCEPTIONS
 else:

• body of this is executed when execution of associated
try body completes with no exceptions

 finally:
• body of this is always executed after try, else and
except clauses, even if they raised another error or
executed a break, continue or return

• useful for clean-up code that should be run no matter
what else happened (e.g. close a file)

6.0001 LECTURE 7 22

WHAT TO DO WITH
EXCEPTIONS?
 what to do when encounter an error?

 fail silently:
• substitute default values or just continue

• bad idea! user gets no warning

 return an “error” value
• what value to choose?

• complicates code having to check for a special value

 stop execution, signal error condition
• in Python: raise an exception
raise Exception("descriptive string")

6.0001 LECTURE 7 23

EXCEPTIONS AS CONTROL
FLOW
 don’t return special values when an error occurred
and then check whether ‘error value’ was returned

 instead, raise an exception when unable to produce a
result consistent with function’s specification

raise <exceptionName>(<arguments>)

raise ValueError("something is wrong")

6.0001 LECTURE 7 24

EXAMPLE: RAISING AN
EXCEPTION

def get_ratios(L1, L2):

""" Assumes: L1 and L2 are lists of equal length of numbers

Returns: a list containing L1[i]/L2[i] """

ratios = []

for index in range(len(L1)):

try:

ratios.append(L1[index]/L2[index])

except ZeroDivisionError:

ratios.append(float('nan')) #nan = not a number

except:

raise ValueError('get_ratios called with bad arg')

return ratios

6.0001 LECTURE 7 25

EXAMPLE OF EXCEPTIONS
 assume we are given a class list for a subject: each
entry is a list of two parts
• a list of first and last name for a student

• a list of grades on assignments

 create a new class list, with name, grades, and an
average

6.0001 LECTURE 7 26

test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],

[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],

[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

EXAMPLE
CODE

def get_stats(class_list):

new_stats = []

for elt in class_list:

new_stats.append([elt[0], elt[1], avg(elt[1])])

return new_stats

def avg(grades):

return sum(grades)/len(grades)

6.0001 LECTURE 7 27

[[['peter', 'parker'], [80.0, 70.0, 85.0]],

[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

ERROR IF NO GRADE FOR A
STUDENT
 if one or more students don’t have any grades,
get an error

test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]],

[['bruce', 'wayne'], [10.0, 8.0, 74.0]],

[['captain', 'america'], [8.0,10.0,96.0]],

[['deadpool'], []]]

 get ZeroDivisionError: float division by zero
because try to
return sum(grades)/len(grades)

6.0001 LECTURE 7 28

OPTION 1: FLAG THE ERROR
BY PRINTING A MESSAGE
 decide to notify that something went wrong with a msg
def avg(grades):

try:

return sum(grades)/len(grades)

except ZeroDivisionError:

print('warning: no grades data')

 running on some test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334],

[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],

[['deadpool'], [], None]]

6.0001 LECTURE 7 29

OPTION 2: CHANGE THE POLICY
 decide that a student with no grades gets a zero
def avg(grades):

try:

return sum(grades)/len(grades)

except ZeroDivisionError:

print('warning: no grades data')

return 0.0

 running on some test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334],

[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],

[['deadpool'], [], 0.0]]

6.0001 LECTURE 7 30

ASSERTIONS
 want to be sure that assumptions on state of
computation are as expected

 use an assert statement to raise an
AssertionError exception if assumptions not met

 an example of good defensive programming

316.0001 LECTURE 7

EXAMPLE

def avg(grades):

assert len(grades) != 0, 'no grades data'

return sum(grades)/len(grades)

 raises an AssertionError if it is given an empty list for
grades

 otherwise runs ok

326.0001 LECTURE 7

ASSERTIONS AS DEFENSIVE
PROGRAMMING
 assertions don’t allow a programmer to control
response to unexpected conditions

 ensure that execution halts whenever an expected
condition is not met

 typically used to check inputs to functions, but can be
used anywhere

 can be used to check outputs of a function to avoid
propagating bad values

 can make it easier to locate a source of a bug

336.0001 LECTURE 7

WHERE TO USE ASSERTIONS?
 goal is to spot bugs as soon as introduced and make
clear where they happened

 use as a supplement to testing

 raise exceptions if users supplies bad data input

 use assertions to
• check types of arguments or values

• check that invariants on data structures are met

• check constraints on return values

• check for violations of constraints on procedure (e.g. no
duplicates in a list)

346.0001 LECTURE 7

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

TUPLES, LISTS,
ALIASING,
MUTABILITY, CLONING
(download slides and .py files and follow along!)

6.0001 LECTURE 5

6.0001 LECTURE 5 1

LAST TIME
 functions

 decomposition – create structure

 abstraction – suppress details

 from now on will be using functions a lot

6.0001 LECTURE 5 2

TODAY
 have seen variable types: int, float, bool,string

 introduce new compound data types
• tuples

• lists

 idea of aliasing

 idea of mutability

 idea of cloning

6.0001 LECTURE 5 3

TUPLES
 an ordered sequence of elements, can mix element types

 cannot change element values, immutable

 represented with parentheses

te = ()

t = (2,"mit",3)

t[0]  evaluates to 2

(2,"mit",3) + (5,6)  evaluates to (2,"mit",3,5,6)

t[1:2]  slice tuple, evaluates to ("mit",)

t[1:3]  slice tuple, evaluates to ("mit",3)

len(t)  evaluates to 3

t[1] = 4  gives error, can’t modify object
6.0001 LECTURE 5 4

TUPLES
 conveniently used to swap variable values

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

 used to return more than one value from a function

def quotient_and_remainder(x, y):

q = x // y

r = x % y

return (q, r)

(quot, rem) = quotient_and_remainder(4,5)

6.0001 LECTURE 5 5

MANIPULATING TUPLES

 can iterate over tuples

def get_data(aTuple):

nums = ()

words = ()

for t in aTuple:

nums = nums + (t[0],)

if t[1] not in words:

words = words + (t[1],)

min_n = min(nums)

max_n = max(nums)

unique_words = len(words)

return (min_n, max_n, unique_words)

6.0001 LECTURE 5 6

aTuple:((),(),())

nums()

words()

if not already in words
i.e. unique strings from aTuple

? ? ?

LISTS
 ordered sequence of information, accessible by index

 a list is denoted by square brackets, []

 a list contains elements
• usually homogeneous (ie, all integers)

• can contain mixed types (not common)

 list elements can be changed so a list is mutable

6.0001 LECTURE 5 7

INDICES AND ORDERING
a_list = []

L = [2, 'a', 4, [1,2]]

len(L)  evaluates to 4

L[0]  evaluates to 2

L[2]+1  evaluates to 5

L[3]  evaluates to [1,2], another list!

L[4]  gives an error

i = 2

L[i-1]  evaluates to ‘a’ since L[1]='a' above

6.0001 LECTURE 5 8

CHANGING ELEMENTS
 lists are mutable!

 assigning to an element at an index changes the value

L = [2, 1, 3]

L[1] = 5

 L is now [2, 5, 3], note this is the same object L

6.0001 LECTURE 5 9

L

[2,1,3][2,5,3]

ITERATING OVER A LIST
 compute the sum of elements of a list

 common pattern, iterate over list elements

 notice
• list elements are indexed 0 to len(L)-1

• range(n) goes from 0 to n-1

6.0001 LECTURE 5 10

total = 0

for i in range(len(L)):

total += L[i]

print total

total = 0

for i in L:

total += i

print total

OPERATIONS ON LISTS - ADD
 add elements to end of list with L.append(element)

 mutates the list!
L = [2,1,3]

L.append(5)  L is now [2,1,3,5]

 what is the dot?
• lists are Python objects, everything in Python is an object

• objects have data

• objects have methods and functions

• access this information by object_name.do_something()

• will learn more about these later
6.0001 LECTURE 5 11

OPERATIONS ON LISTS - ADD
 to combine lists together use concatenation, + operator,
to give you a new list

 mutate list with L.extend(some_list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2  L3 is [2,1,3,4,5,6]
L1, L2 unchanged

L1.extend([0,6])  mutated L1 to [2,1,3,0,6]

6.0001 LECTURE 5 12

OPERATIONS ON LISTS -
REMOVE
 delete element at a specific index with del(L[index])

 remove element at end of list with L.pop(), returns the
removed element

 remove a specific element with L.remove(element)
• looks for the element and removes it

• if element occurs multiple times, removes first occurrence

• if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order

L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0]
del(L[1])  mutates L = [1,3,7,0]
L.pop()  returns 0 and mutates L = [1,3,7]

6.0001 LECTURE 5 13

CONVERT LISTS TO STRINGS
AND BACK
 convert string to list with list(s), returns a list with every
character from s an element in L

 can use s.split(), to split a string on a character parameter,
splits on spaces if called without a parameter

 use ''.join(L) to turn a list of characters into a string, can
give a character in quotes to add char between every element

6.0001 LECTURE 5 14

s = "I<3 cs"  s is a string
list(s)  returns ['I','<','3',' ','c','s']
s.split('<')  returns ['I', '3 cs']
L = ['a','b','c']  L is a list
''.join(L)  returns "abc"
'_'.join(L)  returns "a_b_c"

OTHER LIST OPERATIONS
 sort() and sorted()

 reverse()

 and many more!
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]

sorted(L)  returns sorted list, does not mutate L

L.sort()  mutates L=[0,3,6,9]

L.reverse()  mutates L=[9,6,3,0]

6.0001 LECTURE 5 15

https://docs.python.org/3/tutorial/datastructures.html

MUTATION, ALIASING, CLONING

Again, Python Tutor is your best friend
to help sort this out!

http://www.pythontutor.com/

IMPORTANT
and

TRICKY!

6.0001 LECTURE 5 16

http://www.pythontutor.com/

LISTS IN MEMORY
 lists are mutable

 behave differently than immutable types

 is an object in memory

 variable name points to object

 any variable pointing to that object is affected

 key phrase to keep in mind when working with lists is
side effects

6.0001 LECTURE 5 17

AN ANALOGY
 attributes of a person

◦ singer, rich

 he is known by many names

 all nicknames point to the same person
• add new attribute to one nickname …

• … all his nicknames refer to old attributes AND all new ones

6.0001 LECTURE 5 18

Justin Bieber singer rich troublemaker

The Bieb singer rich troublemaker

JBeebs singer rich troublemaker

ALIASES
 hot is an alias for warm – changing one changes the
other!

 append() has a side effect

6.0001 LECTURE 5 19

CLONING A LIST
 create a new list and copy every element using
chill = cool[:]

6.0001 LECTURE 5 20

SORTING LISTS
 calling sort() mutates the list, returns nothing

 calling sorted()
does not mutate
list, must assign
result to a variable

6.0001 LECTURE 5 21

LISTS OF LISTS OF LISTS OF….
 can have nested lists

 side effects still
possible after mutation

6.0001 LECTURE 5 22

MUTATION AND ITERATION
Try this in Python Tutor!

 avoid mutating a list as you are iterating over it
def remove_dups(L1, L2):

for e in L1:

if e in L2:

L1.remove(e)

L1 = [1, 2, 3, 4]

L2 = [1, 2, 5, 6]

remove_dups(L1, L2)

 L1 is [2,3,4] not [3,4] Why?
• Python uses an internal counter to keep track of index it is in the loop

• mutating changes the list length but Python doesn’t update the counter

• loop never sees element 2

6.0001 LECTURE 5 23

def remove_dups(L1, L2):

L1_copy = L1[:]

for e in L1_copy:

if e in L2:

L1.remove(e)

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

